Mask Fabrication For Nanoimprint Lithography

Doug Resnick Canon Nanotechnologies 1807C W. Braker Lane Austin, TX 78758

* dresnick@cnt.canon.com

Template (Imprint Mask) Fabrication: Outline

- E-beam and Etch Basics
- Thermal IL Template Fabrication Process
- Templates for Soft Lithography
- J-FIL Templates
	- Processing Challenges
	- Mask Shop Compatible Process
- Commercial Path for Templates
	- Gaussian based templates
		- Resolution and Line Width Roughness (LWR)
	- Variable Shape Beam templates
		- Resolution, Image Placement, Write Time
	- Mask Replication
		- Template Inspection
		- Template Repair
- Templates for full wafer/disk, and R2R imprinting
- Conclusions

By the end of the course, you will know how to fabricate (or better yet, order) your own templates

First, A Brief History Lesson

Gutenberg Press

Imprint Lithography

- 1041 Movable clay type invented in China.
- 1436 Gutenberg commenced work on his press.
- 1440 Gutenberg completed his press which used metal moving type.
- 1455 Gutenberg completed work on his 42 Line Bible.
- 1455 Gutenberg was effectively bankrupt.
- 1456 Mazarw Bible printed in Mainz.
- 1462 The attack on Mainz by soldiers of the Archbishop of Nassau, caused printers to flee and spread their skills around Europe.
- 1477 The first book to be printed in England (by Caxton)
- 1499 Printing established in more than 250 cities in Europe.

Mask Basics

Photomask

- For a photomask, light is projected through the mask, through a lens (with 4x reduction optics) and an aerial image is projected into a photoresist on a silicon wafer
- For an imprint mask (or template), the final resist image depends almost entirely on the relief feature on the template

Canon Nanotechnologies, Inc.

Template Fabrication

Fabrication of a template generally requires:

- Patterning of a resist (Electron beam writing system)
- Pattern transfer of the pattern into an underlying material (RIE)

Gaussian-Beam tool Shaped-Beam Tool

Canon Nanotechnologies, Inc. Iprints

E-beam Systems

Electron Beam Writing Strategies

Pros and Cons •Small spot size •Dreadfully slow •Example: Vistec VB300

Pros and Cons

- •Much faster
- •Resolution limited by blur
- •Example: NuFlare EBM 7000

Electron Scattering Basics

(Subtitle: Why electron beam lithographers are unhappy people)

Etch Basics: Sputtering

- • **Sputtering has an angular dependence (faceting).**
- • **Sputtering reduces the need for product volatility.**
- • **Sputtering provides directional anisotropy.**
- • **Inert gases provide good yields and avoid contamination.**
- •**Redeposition is an issue.**
- •**Aspect ratio is limited.**

Canon Nanotechnologies, Inc. Iprints

**After Berkeley Labs*

Etch Basics: Chemical Etching

- • **At higher pressures, substrate removal is accomplished primarily by reactive species generated in the plasma.**
- • **Reaction rate can be strongly influenced by ions**
	- − damage
	- − clean
	- − energy for reaction
	- **Low pressure results in normal ion incidence, but also typically lower ion densities.**
		- − A variety of tool configurations are available on the market to address specific applications.

**After Berkeley Labs*

Thermal IL Template Fabrication

Silicon Etch

- $Cl₂$ and HBr chemistries tend to etch silicon more anistropically
- SF₆ and CF₄/0₂ tend to undercut the feature (end product is SiF₄)
- Resist alone is not always a sufficient etch mask. Oxides, nitrides, and chrome are often used as hard masks

Canon Nanotechnologies, Inc.

IL Template Fabrication

Another popular IL template scheme uses SiO_2 as the mold

* Plasma Etching: Daniel Flamm

Soft Lithography Templates

2. Imprint stamp

 00000 00000 ∞

3. Transfer molecules

4. Pattern Transfer

Polydimethylsiloxane (PDMS)

Elastomeric material: polymer chain of silicon containing oils

CH₃
$$
\begin{bmatrix} CH_3 \ | \ H_3 \ -Si-O \ | \ Si-O \ | \ Si-O \ | \ Si-CH_3 \end{bmatrix}
$$

CH₃ $\begin{bmatrix} CH_3 \ | \ CH_3 \ | \ CH_3 \end{bmatrix}$ _nCH₃

Example: Sylgard 184: Dow Corning

PDMS Fabrication Process

J-FIL Template Layout for Semiconductors

26mm x 33mm Patterned area

6" x 6" x 0.25" (6025) quartz blank substrate Patterned area rests on a mesa (15-30um)

J-FIL Template Attributes

Conventional Photomask Processing

To fabricate a J-FIL Template, we need to add one more step

Etch quartz, Strip chrome

This process is currently used in mask shops to fabricate phase shift masks

So, What's the Problem?

- We're making 1X masks, so we must dry etch
- Dry etching of Cr is subject to undercut and loading effects

Chromium Etching

Cr + 2O* + 2Cl* $\;\rightarrow$ CrO₂Cl₂

Issues: The etch has a large chemical component: undercut The process requires a lot of oxygen (25%): resist loss The process is subject to loading effects: CD variation

Canon Nanotechnologies, Inc.

J-FIL Template Fabrication Schemes

• **Compatible with existing Mask Shop Processes**

- Leica VB6 operating at 100 kV
- 5 nm address grid

Following Slides:

- ZEP520 positive e-beam resist
- Track processing on an EVG 150/160
- Etching: Unaxis VLR
- Gas Chemistry: $Cr Cl_2/O_2$, $SiO_2 CF_4/O_2$

ZEP520 Exposure/Descum

Cr Process CD Results

•All results shown are for 80 nm features.

MOTOROLA LABS

• Similar to observations made for increasing descum time, ^a positive CD change of 3.8 nm per 20% of Cr overetch exists.

FIB/TEM Feature Profile

• Cross-sectioning the trenches was done using ^a focused ion beam tool in conjunction with ^a protective film stack to avoid extreme charging, sample drift, and surface damage.

PF031023-1.3 PF031023-1.4

- • Using TEM measurements as a basis, sidewall angles of 150 nm features were calculated to be $\sim 84^\circ$
- Canon Nanotechnologies, Inc. Iprints • The measured etch depth of 98 nm compares extremely well to profilometer and AFM measurements.

Fabrication Window

 \bullet A 20 ^s descum coupled with ^a 110% Cr overetch was found to give the best performance in terms of CD control and line edge roughness.

- • For 60 nm clustered features, the spaces measure \sim 4 nm over coded size.
- • The descum process increases CD by about the same magnitude.
- • Resist erosion during Cr etch results in approximately 7 more nanometers of bias.
- • After quartz etch, CD bias is 1.5 nm less than coded. The quartz sidewall angle is about 5° from the normal
- • Final CD bias ends up approximately 1 nm from coded after the Cr hardmask is stripped.

Pattern/Pattern Transfer Process

DNP Pattern Transfer Process Magnification : 150k HP32nm HP28nm HP24nm HP20nm Resist Chrome *<u>MAAAAAAAA</u>* Quartz *<u>MAAAAAAAA</u>* **VAAAAAAAAA MAAAAAAAA**

PMJ: April 2008

Resolution with 100kV GB writer DNP

Canon Nanotechnologies, Inc.

Electron Beam Pattern Generators

There are two methods for generating patterns on a template:

- *1. Gaussian beam PGs: Great for unit process development and device prototyping*
- *2. Variable Shaped Beam PGs: Needed for full field pattern generation and for image placement*

▶ How do I get the best result from each tool?

- Resolution
- Line Width Roughness
- CD uniformity
- Image Placement
- Write Time

Gaussian Beam Pattern Generators

ZEP520A Process Development

 Resist response was studied for a variety of different developers

 \blacktriangleright **Exposure latitude of the resist was mapped as a function of feature bias**

Amyl Acetate developer provides a good combination of contrast and sensitivity

Exposure latitude is improves as biasing of critical features increases

Dose (uC/cm2)

Canon Nanotechnologies, Inc.

Development of ZEP520A resist

Imprint Resolution

Line Width Roughness (LWR)

Variation in CD along the length of a line

- Results in variation of MOS gate width
- –Affects device speed of individual transistors
- –Leads to IC timing issues

Future nodes have no known solutions.

Canon Nanotechnologies, Inc. Iprints

100 nm

LWR Example: EUVL

- **Throughput requirements of EUVL require the use of fast chemically amplified resists**
	- Low exposure doses required for throughput
		- ▶ Too few photons: ~2 / nm²
		- ▶ Shot noise effects

LWR ~ 6-8 nm(SPIE)

RLS Trade-Off for Chemically Amplified Resists

Resolution vs. LWR vs. Sensitivity

(Robert Brainard, Gregg Gallatin)

So, is imprint lithography immune to this problem?

YES! And NO!!

Canon Nanotechnologies, Inc.

Pattern formation with J-FIL technology

Imprint Mask Fabrication Imprint Patterning

Resolution and LWR

- **Use non-CA resists for best resolution and LWR performance.**
- **Utilize existing photomask infrastructure for fabrication and inspection.**

 CD, CDU, LWR, etc. of the patterned resist is determined by the template.

Canon Nanotechnologies, Inc.

LWR minimization at 22 nm

Template: CD and LWR Analysis

- \blacktriangleright **CD is linear from 32 to 44nm (to within about 5%)**
- \blacktriangleright **LWR is small, and independent of critical dimension**

32nm Imprint Evaluation

30 nm and 40 nm design: LWR after etch into SiO₂

Summary of Line Width Roughness Data

Canon Nanotechnologies, Inc. Iprints

Variable Shape Beam Pattern Generators

Variable Shape Beam PGs (VSBs)

Old Wives Tale 9647: VSB tools are the correct choice if you need to write fast, but they don't have great resolution

Canon Nanotechnologies, Inc.

VSB: Commercial Shops – CA Resists

Exposure Results: VSBs and ZEP520A

BACUS: September 2007

38nm Half Pitch NAND Flash: Gate Level

VSB: 32nm Imprints

DNP

August 2008

Canon Nanotechnologies, Inc. Iprints

Sub-32nm from VSB PGs

DNP NUFLARE

Sub 20nm Masks from VSB PGs

- **Current NAND Flash devices are now being fabricated at half pitches of less than 20nm**
- ▶ How do we make a sub-20nm mask from a VSB tool?

OK, how can they do that?

Canon Nanotechnologies, Inc.

Density Multiplication

Density multiplication, also referred to as self aligned spacer double patterning is a standard process of record used to make high density NAND Flash devices

Some Density Multiplication Examples

SADP

SAQP

First Cycle of SADP From 120nm pitch to 60nm pitch

Second Cycle of SADP From 60nm pitch to 30nm pitch

CDU and Image Placement Comparison

Write Time Patterns

Optical mask A (with OPC)

Template A (without OPC)

Reticle A Pattern density: **39.68%**

Template A

36.68%

Pattern density:

Optical mask B (with OPC)

Template B Pattern density: **11.78%**

Canon Nanotechnologies, Inc. Iprints Template B (without OPC)

GMentor

Reticle B Pattern density: **15.88%**

Write Time Results

When all is said and done, e-beam machines are slow! *How can we make them write faster?*

Probably good for fast mask writing, but maybe never for wafer writing

Canon Nanotechnologies, Inc.

Mask Replication

The solution: create a Master Template that can easily be replicated

- **Master Daughter approach**
- **Good news! You can use an imprinter to make the Daughter Templates**