Rubber: History, Properties and Structure

Katrina Czenkusch Physical Chemistry of Macromolecules April 9, 2009

Definition of Rubber/Elastomer

"A material that can be stretched to at least twice its original length and will retract rapidly and forcibly to substantially its original dimensions upon release of the force."

Natural Rubber: Where?

Hevea brasiliensis

- Most common source
- Responds to wounding by producing more latex
- Produces cis-1,4-polyisoprene
- Native to Amazon Rainforest
- Gutta-Percha
 - Produces trans-1,4-polyisoprene
 - Native to Malaysia
- Rubber Plantations in Malaysia

Rubber in Prehistory

- 60 million BC Europe rubber-producing plants
- First millennium BC Mexico First evidence of the Mesoamerican ballgame
- 6th century Mexico and Central America – Aztecs/Mayans
 - Balls
 - Dipped Feet to make shoes
 - Coated Fabrics

Rubber and Europe

First European exposure

- Columbus supposedly watched a Mesoamerican ballgame
- Early explorers learned native waterproofing techniques
- Charles Marie de la Condamine and Francois Fresneau
 - Popularized rubber in France starting mid 1730's
 - Discovered first solvents
 - Wrote about properties

Vulcanization

1839

- Goodyear and Hancock
- Mixed natural rubber, sulfur and white lead on a hot stove
- Rubber was 'cured' of all its defects

1846

 Alexander Parkes invented a cold-cure process using sulfur chloride gas in solution

Natural Rubber the Real Story

1860 - Williams (UK)

- Decomposed natural rubber to isoprene
- 1879 Bouchardat (France)
 - Repolymerized isoprene to make rubber
- 1910 Pickles
 - Rubber is made of long chains of isoprene

Origins of Rubber Elasticity

Energy elasticity – elongation resulting from rotation around single bonds and the straining of bond angles and lengths

Statistics of Ideal Rubber Elasticity

Ideal rubber

Slope of the stress-strain curve or Young's Modulus

$$\mathsf{E}=\frac{\mathsf{\rho}\mathsf{R}\mathsf{T}}{\mathsf{M}\mathsf{c}}(2\alpha+\alpha^{-2})$$

- $-\rho = density$
- R = Gas Constant
- -T = temperature
- Mc = number average molecular weight of the network chains
- $-\alpha = \text{extension ratio}, I/I_0$
- $I/I_0 = current length/unstretched length$

Deviations from Ideality

• Under predicts modulus for $\alpha > 1.5$

Chain ends

Stress induced crystallization

Butadiene Rubber

Polybutadiene

- First synthesized in 1910 by S. Lebedev
- Very durable but cis/trans issues
- Side walls of truck tires and golf balls
- Modern day use is as copolymer

And its copolymers

Buna N/ Buna NN

- Butadiene and acrylonitrile
- Increased acrylonitrile increases stiffness and oil resistance

Buna S

- Butadiene and styrene
- Increased styrene
 leads to stiffer rubber

The War Years

Japan captured Pacific Rubber plantationsUS synthetic rubber

- 1939 2000 tons/yr
- 1945 830,000 tons/yr
- Butyl rubber
- German synthetic rubber
 - Before 22,000 tons/yr
 - Middle 100,000 tons/yr

Butyl Rubber

Copolymer of 98% isobutene

- 2% isoprene or butadiene
- Cationic polymerization
- Air impermeable
- Inner tubes for tires

Thermoplastic Elastomers

- Rubbers which can be melt processed after "crosslinking"
- Immiscible block copolymers
 - Form matrix of rubbery polymer with spheres of hard segments
 - Most common: Styrene-Butadiene-Styrene (SBS)

Requirements to make a Rubber

High Molecular Weight

- Rubber elasticity is due to the coiling/uncoiling of chains
- Use temperature must be above Tg
 - To allow for molecular motion
- Amorphous in its unstretched state
 - Crystals would hinder coiling/uncoiling
- Chains tied together to prevent flow
 - Traditionally through crosslinking
 - Hard/Soft Domains
 - Entanglements
 - All polymers above Tg act as rubbers due to entanglements
 - However, when the entanglements break, the polymer will begin to flow

Rubber: History, Properties and Structure

Katrina Czenkusch Physical Chemistry of Macromolecules April 9, 2009

References

- Goritz, D., Muller, F. H., Sietz, W.; "Temperature-induced and Stress-induced Crystallization in Oriented Polymers", *Progress in Colloid and Polymer Science*; Springer Berlin/Heidelberg, 1977
- Herbert, Vernon; Attilio Bisio; Synthetic Rubber, Greenwood Press, 1985
- Hiemenz, Paul C.; Lodge, Timothy P.; Polymer Chemistry 2nd ed., CRC Press; 2007
- James, Hubert M., Guth, Eugene; *Theory of the Elastic Properties of Rubber*, J. Chem. Phys. **11**, 455 (1943)
- Loadman, John; Tears of the Tree, Oxford University Press, 2005
- Rosen, Stephen L.; Fundamental Principles of Polymeric Materials 2nd ed., Wiley-Interscience Publication, 1993
- Solo, Robert; Research and Development in the Synthetic Rubber Industry; The Quarterly Journal of Economics; Vol 68, No.1 (1954)

From Curiosity to Product (1820-1840)

T. Hancock

- Pickling Machine produce homogeneous rubber 'dough'
- Spreader the standard coating machine used today

M. Faraday

 Established empirical formula of natural rubber (C₅H₈)

Natural Rubber Production

Wild Production

- Amazon River and its tributaries
- Africa
- 1876 H. Wickham
 - Sent 70,000 Hevea seeds to Britain
 - 2397 germinated
 - Plants sent to Singapore, India, Malaysia
 - Foundation of the eastern rubber plantations (1895)

1913-1914 - Plantation rubber exceeds wild