Macromolecular Chemistry

Lecture 13

Free Radical Co-polymerization

where k₁₁ and k₂₂ : self-propagation rate constant

k₁₂ and k₂₁ : cross-propagation rate constant Assume chain end concentrations are constant at "steady state" o Monomer reactivity ratio

$$\frac{k_{11}}{k_{12}} = r_1 \qquad \frac{k_{22}}{k_{21}} = r_2$$

If $r_1 > 1$ this means that $\sim M_1 \cdot adds M_1$ more readily than M_2 . If r_1 is zero then M_1 does not undergo homopolymerization!!

o Copolymer (composition) equation $\frac{d[M_1]}{d[M_2]} = \frac{[M_1]}{[M_2]} \left(\frac{r_1[M_1] + [M_2]}{[M_1] + r_2[M_2]} \right)$

This important relationship can be expressed in terms of mole fractions rather than concentrations

o Instantaneous composition of feed and polymer

- f₁ = mole fraction of M₁ in the feed
- f₂ = mole fraction of M₂ in the feed
- **F**₁ = mole fraction of M₁ in the copolymer
- F₂ = mole fraction of M₂ in the copolymer

Copolymerization Equation

$$\mathbf{F}_{1} = \frac{\mathbf{r}_{1}\mathbf{f}_{1}^{2} + \mathbf{f}_{1}\mathbf{f}_{2}}{\mathbf{r}_{1}\mathbf{f}_{1}^{2} + \mathbf{2}\mathbf{f}_{1}\mathbf{f}_{2} + \mathbf{r}_{2}\mathbf{f}_{2}^{2}}$$

This gives the Instantaneous mole fraction of M_1 in the copolymer

Finemann-Ross Equation

' Rea	Reactivity Ratios		
M ₁	M ₂	r ₁	
Styrene	Methyl methacrylate	0.52	
Styrene	Acrylonitrile	0.40	
Sturopo	Vinyl acetate	55	

Styrene	Methyl methacrylate	0.52	0.46	60
Styrene	Acrylonitrile	0.40	0.04	60
Styrene	Vinyl acetate	55	0.01	60
Styrene	Maleic anhydride	0.041	0.01	60
Styrene	Vinyl chloride	17	0.02	60
Styrene	1,3-Butadiene	0.58	1.35	50
Styrene	Isoprene	0.54	1.92	80
Methyl methacylate	Vinyl chloride	10	0.1	68
Methyl methacylate	Vinyl acetate	20	0.015	60
Methyl methacylate	Acrylonitrile	1.20	0.15	60
Methyl methacylate	1,3-Butadiene	0.25	0.75	90
Ethylene	Tetrafluoroethylene	0.38	0.1	25
Ethylene	Acrylonitrile	0	7	20
Ethylene	Vinyl acetate	0.97	1.02	130

Temperature(C)

r₂

Let's actually calculate r_1 and r_2 from some data

We run the copolymerization for a very short time starting with different weight ratios of 2 monomers. The assumption is that f does not change in this experiment

We isolate the small amount of polymer generated and determine the ratio of monomers incorporated....by nmr, for example

We apply the Fineman-Ross analysis and extract the reactivity ratios.

1) $r_1 = r_2 = 1$

No preference for homopolymerization or copolymerization

e.g. M_1 = ethylene M_2 = vinyl acetate r_1 = 0.97 r_2 = 1.02

2) $r_1 = r_2 = 0$

Alternating copolymer

e.g. $M_1 = styrene$ $M_2 = maleic anhydride$ $r_1 = 0.041$ $r_2 = 0.01$

$r_1 > 1, r_2 < 1$ or $r_1 < 1, r_2 > 1$

If $r_1 > 1$ (k11 > k12) and $r_2 < 1$ (k22 < k21) then M_1 is more active than M_2 whether either M_1^{\bullet} and M_2^{\bullet} . F_1^{\bullet} is always larger than f_1 and the curve is always above the diagonal.

The situation is similar for $r_1 < 1$, $r_2 > 1$ but the curve is below the diagonal $r_1/392N$

Ideal copolymerization

as $r_1 \ge r_2 = 1$ $(r_2=1/r_1)$, it becomes an "ideal copolymerization" $\frac{d[M_1]}{d[M_2]} = r_1 \frac{[M_1]}{[M_2]} \qquad \mathsf{F}$

In this case M_1^{\bullet} and M_2^{\bullet} have the same preference for adding either of the two monomers.

Chemistry 367L/392

Azeotropic copolymerization

Condition under which F, the mole fraction of monomer in the polymer and f, the mole fraction in the feed remain constant through the whole polymerization....that is, these ratios are not a function conversion

Rich in one monomer

(composition of polymer)

Quite typical copolymerisation 1.0 A = Acrylonitrile 0.8 · B = Butadiene (polymer composition) $r_1 = 0.046, r_2 = 0.36$ 0.6 · 0.4 **Azeotropic Composition** 0.2 0.0 0.2 0.4 0.6 0.8 0.0 1.0 (monomer composition)

Poly(styrene-alt-maleic anhydride)

Charge transfer complex polymerization (alternating copolymer).

If $r_1 > 1$ (k11 > k12) and $r_2 < 1$ (k22 < k21) then M_1 is more active than M_2 whether either M_1^* and M_2^* . F_1^- is always larger than f_1 and the curve is always above the diagonal.

The situation is similar for $r_1 < 1$, $r_2 > 1$ but the curve is below the diagonal $r_1/392N$

activity Ratios			
M ₂	r ₁	r ₂	Temperature(た)
Methyl methacrylate	0.52	0.46	60
Acrylonitrile	0.40	0.04	60
Vinyl acetate	55	0.01	60
Maleic anhydride	0.041	0.01	60
Vinyl chloride	17	0.02	60
1,3-Butadiene	0.58	1.35	50
Isoprene	0.54	1.92	80
What is consta This is a bit dis	nt here courag	e???	3
	Matios M2 Methyl methacrylate Acrylonitrile Vinyl acetate Maleic anhydride Uinyl chloride 1,3-Butadiene Isoprene	Mathyl methacrylate 0.52 Methyl methacrylate 0.52 Acrylonitrile 0.40 Vinyl acetate 55 Maleic anhydride 0.041 Vinyl chloride 17 1,3-Butadiene 0.58 Isoprene 0.54	Activity RatiosM2r1r2Methyl methacrylate0.520.46Acrylonitrile0.400.04Vinyl acetate550.01Maleic anhydride0.0410.01Vinyl chloride0.581.35Isoprene0.541.92What is constant here???Chis is a bit discouraging!

Estimating Reactivity Ratios

measurement of r_1 and r_2 is possible by applying the Fineman Rose equation but it is a bit tedious!

copolymerization reactivity ratios (r1, r2) depend on:

- temperature
- solvent
- mechanism of polymerization
- pair of monomers

development of a more general system

Q-e-scheme of Alfrey and Price

allows estimation of (radical) copolymerization reactivity ratios of unknown pairs of monomers

Q-e-scheme of Alfrey and Price

- allows estimation of (radical) copolymerization reactivity ratios of unknown comonomers
- two parameters:
 - Q value resonance stabilisation of radical

0 < Q < 0.35	poor stabilization
Q > 0.35	good stabilization

- e value electro negativity of C=C-double bond
 - e < 0 electron rich e > 0 electron poor
- reference: styrene Q = 1 e = 0.8
- calculation of reactivity ratios:

$$r_1 = \frac{Q_1}{Q_2} \cdot \mathbf{e}^{(-e_1(e_1 - e_2))} \qquad r_2 = \frac{Q_2}{Q_1} \cdot \mathbf{e}^{(-e_2(e_2 - e_1))}$$

Q and e

- Generalizations:
 - This is a purely empirical relationship
 - Q and e come from measurements of r_1 and r_2
 - Ideal condition is same Q and e values
 - Proceeds poorly if Q_1 and Q_2 are very different
 - Tends toward alternating if Q's are the same and e's arelarge but of opposite sign.

Q-e-scheme of Alfrey and Price

Reactivity (Q) and Polarity (e) of Monomer

Monomer	Q	e
1-vinylnaphthalene	1.94	-1.12
p- <mark>Nitro</mark> styrene	1.63	0.39
p-Methoxystyrene	1.36	-1.11
Methyl methacrylate	0.74	0.40
Acrylonitrile	0.60	1.20
Methyl <mark>acrylate</mark>	0.42	0.60
Vinyl chloride	0.044	0.20
Vinyl acetate	0.026	-0.22

Conclusions-radical copolymers

- Co-polymers are important
 - Properties depend on composition
- In general, these materials are heterogeneous
- Mayo equation allows calculation of composition knowing r₁ and r₂
- Finemann Ross approach allows determination of r₁ and r₂
- Alfrey Price allows estimate of r₁ and r₂

What about step growth copolymers??

We discussed A B type step growth polymers -ABABABA-

If N_A^0 is the number of A molecules at the beginning of the polymerization and N_B^0 is the number if B molecules,

We define r, the stoichiometric imbalance as

$$r = \frac{N_A^0}{N_B^0}$$

If p is the conversion (as in Carothers equation) then fraction of B at p is p N_A^0 or pr N_B^0 and the number of unreacted groups N_A and N_B is ...

$$N_A = (1-p)N_A^0$$
 $NB = (1-pr)N_B^0 = (1-pr)\frac{N_A^0}{r}$

At this point, the number of A and B end groups is $N_A + N_B$, but 2 ends per chains...the number *N* of chains in the jar is....

$$N = \frac{1}{2}(N_A + N_B)$$

Which is....
$$N = \frac{1}{2} \left[(1-p)N_A^0 + (1-pr)\frac{N_A^0}{r} \right]$$

Or....
$$N = \frac{N_A^0}{2} \left(1 + \frac{1}{r} - 2p \right)$$

Now..the total number of repeat units, N_r is

 $N_r = \frac{1}{2}(N_A^0 + N_B^0)$ One repeat unit formed per reaction *Chemistry 367L/392N*

Remember....
$$r = \frac{N_A^0}{N_B^0}$$
 So....
 $N_r = \frac{1}{2} \left(N_A^o + \frac{N_A^o}{r} \right) = \frac{N_A^0}{2} \left(\frac{r+1}{r} \right)$

DP is the number of monomer units divided by number of chains

$$DP = \frac{N_r}{N} = \frac{\frac{N_A^0}{2} \left[\frac{r+1}{r} \right]}{\frac{N_A^0}{2} \left[1 + \frac{1}{r} - 2p \right]}$$
Supplementary
Homework...
Show Algebra
Which luckily reduces to...
$$DP = \frac{1+r}{r+1-2p}$$
To here!

$$DP = \frac{1+r}{r+1-2rp}$$
 This is nice!!!

Note that if there is no stoichiometric imbalance, r = 1 and we get.....

$$DP = \frac{1}{1-p}$$
 The Carothers
Equation!!

When A is totally consumed (p = 1) then....

$$DP = \frac{1+r}{1-r}$$

