Optical Lithography Simulation and Photoresist Optimization for Photomask Fabrication

Benjamen M. Rathsack¹, Cyrus E. Tabery¹, Steven A. Scheer¹, Mike Pochkowski², Cece Philbin³, Franklin Kalk³, Clifford L. Henderson⁴, Peter D. Buck⁵ and C. Grant Willson¹

March 15, 1999

¹Department of Chemical Engineering, The University of Texas at Austin

² ETEC Systems Inc., 9100 S. W. Gemini Dr., Beaverton, OR 97008
³ DPI Reticle Technology Center LLC, 2011 Greenhill Dr., Round Rock, TX 78664
⁴ Georgia Institute of Technology, 7778 Atlantic Dr., Atlanta, GA 30332
⁵ Dupont Photomask Inc., 1955 Division St. Gresham, OR 97030

Photomask Fabrication Optimization

UV Light **Photomask Reduction Lens Exposed Resist** Pattern Silicon Substrate *Goal*: Improve resolution and process latitude for photomask fabrication using laser pattern generators

Method: Line edge optimization of exposure image and resist development response

Results: Sub 0.30 µm resist features on photomask substrates

Photomask Fabrication Process

Novolac/DNQ Resist Chemistry

Photoresist polymer matrix synthesis

Photoactive Compound Photoreaction

Photomask Resist Characterization

- I-line photoresists are coated on antireflective (AR3) substrates
- A hotplate was built to mimic the post application bake (PAB) of production photomasks
- Photokinetics measured through exposure parameters (Dill's A, B and C)
- Generate development rate function (R(m)) for resists

Coated Photomask Substrate

Resist	570 nm
Chromium Oxide	35 nm
Chromium	70 nm
Quartz	6.35 mm

Photomask Post Application Bake

Photokinetics Experiment

- -Bleach resist with light at 365 nm
- -Photoactive compound undergoes chemical change
- -Photoproducts do not absorb light
- Measure transmittance of resist film as a function of exposure dose

Photoresist Reaction Kinetics

• Dill parameters A, B and C

- A = bleachable component in resist
- B = non-bleachable

component in resist

C = rate of photochemical reaction in resist

• **Rigorous A,B and C Extraction** Simultaneous solution to the thin film optics and the Beer-Lambert equations

 $A = 0.808 \ 1/mm$ $B = 0.086 \ 1/mm$ $C = 0.010 \ cm^2/mJ$

Lithography Simulation

 $m(x,z) \rightarrow$ relative photoactive compound concentration $\nabla m \rightarrow$ relative photoactive compound concentration gradient $E(x,z) \rightarrow$ exposure energy distribution

Basis of Line Edge Optimization

(0.5 µm Space in Resist)

Aerial Image

Lithographic Imaging Equation

- -Maximize the change in development rate at the edge of the resist feature
- -Maximize $\nabla m = (dm/dx)$ through exposure dose and given aerial image
- -Adjust location of dissolution rate notch (g_{TH}) to the edge of the nominal resist edge (target m) with developer concentration

$$\frac{dR}{dx}\Big|_{\mathcal{X}^*} = \mathbf{g}_{TH} \frac{dm}{dx}$$

$$\boldsymbol{g}_{TH} = \frac{dR}{dm}$$

- R = Dissolution rate
- x = Horizontal position
- m = Relative PAC Concentration
- g_{TH} = Theoretical resist contrast
- x^* = Nominal edge of resist feature

Simulated Optimum Exposure Dose for Photomask Lithography

Determined exposure dose that resulted in the **maximum** ∇ **m**

 $\frac{\text{Best Doses}}{\text{IP3600}} \cong 210 \text{ mJ/cm}^2$ $PFI88A5 \cong 260 \text{ mJ/cm}^2$

Determined m at the edge of the resist feature at the dose giving maximum ∇m

Target mIP3600 = 0.3 PFI88A5 = 0.3

Optimal Development Rate Function (R(m))

Optimal resist for mask lithography has... Large dissolution Notch near Target m

Note:

Resists A, B, PFI88A, E and F have large dissolution rate notches, however, the notches occur at high m. These resist have been optimized for high throughput on Si (high m ~ low dose).

Optimal Dissolution Notch Location

Lower developer concentration shifts notch toward the target m

PFI88A5 Notch Location $m \approx 0.45$ (developed w/ 0.23 N TMAH)

IP3600 Notch Location $m \approx 0.35$ (developed w/ 0.20 N TMAH)

Standing Waves in Photomask Resists

• Lower developer concentration amplifies influence of standing waves

- Hotplate built that mimics the bake profile of photomask surface
- Developed post-exposure bake to minimize standing waves on photomasks

Photomask post-exposure bake improves process latitude

IP3600/ 0.23N TMAH (NMD-W)/90 s dev. time/ 110 mJ/cm²/ 0.5 μm space

Simulated Process Latitude Improvements for IP3600

Current Photomask Process

Improved Photomask Process

PROLITH 2/ 6.04/ 0.5 μ m isolated space/ 82°+ sidewall angle/ ± 5% linewidth latitude

Simulated Process Latitude Improvements for High Resolution Resists

High-Resolution Photomask Process

Improved High-Resolution Photomask Process

PROLITH 2/ 6.04/ 0.5 μ m isolated space/ 82°+ sidewall angle/ ± 5% linewidth latitude

Focus-Exposure Process Latitude Improvements (0.5 µm space)

IP3600/ 0.26N TMAH (NMD-W)/ IP3600/ 0.20N TMAH (NMD-W)/ PFI88A5/ 0.26N TMAH (NMD-W)/ 60 s dev./ No PEB 180 s dev./ PEB 180 s dev./ PEB

Manufacturing trials at the DPI Reticle Technology Center

Focus-Exposure Process Latitude Improvements (0.3 µm spaces)

Manufacturing trials at the DPI Reticle Technology Center

High Resolution Optical Photomask Lithography

0.5 µm isolated resist space

 $0.3 \ \mu m$ isolated resist space

PFI88A5/ 0.26N TMAH NMD-W/ 180 s dev. time/ PEB/ 220mJ/cm²

Optimal Photomask Process for Sub 0.30 µm Resist Features

Process Conditions

- High Resolution I-line resists
- Higher exposure energy
- Lower developer concentration
- Longer development time
- Post-exposure bake

Process Parameter Optimization

- Sub-0.30 µm resist features
- Improved focus-exposure process latitude
- Reduce Scumming/ defects
- Reduced CD sensitivity to dose
- Reduce pattern density effects

$0.25 \ \mu m$ isolated resist space

PFI88A5/ 0.26N TMAH NMD-W/ 180 s dev. time/ PEB/ 220mJ/cm²

Acknowledgements

- ETEC Systems Inc.
- SRC/ National Semiconductor Fellowship
- Sumitomo, Shipley, Clariant, Olin and TOK
- FINLE Technologies
- J. A. Woollam (Ron Synowicki)