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ABSTRACT

The demand for smaller and more uniform features on photomasks is rapidly increasing.  The complexity of these patterns is
also increasing with the need for optical proximity correction and phase shifting structures.  These complex mask features
demand unprecedented accuracy in pattern placement and dimensional control.  We have conducted research designed to
optimize the process for laser pattern generation by improving resolution and process latitude.  Lithographic simulation was
utilized for process optimization because of the very high cost of mask patterning and metrology experiments.

Benchmark resist characterization and simulations were performed on IP3600 (TOK), which is a resist commonly used in
photomask fabrication.  High resolution I-line resists provided by Sumitomo (PFI88A5), Shipley (i120, SPR1055), Clariant
(AZ7905) and Olin (RX620, RX672) were characterized and simulated to explore the potential of high-contrast (notch) I-line
resists for photomask fabrication.  These materials were characterized on AR3 chromium oxide coated quartz substrates.  The
Dill exposure (A, B and C) and development (R(m)) parameters were extracted using custom hardware and software.  A
custom hotplate was constructed that provides a post-application bake profile that mimics that of a production photomask
bake process.  The resists were compared by simulating their process windows using pattern generator aerial images supplied
by ETEC Systems Inc.  The simulations predicted that the implementation of a post exposure-bake, higher exposure dose and
longer development time with diluted developer would provide dramatic improvements in resolution and linewidth
uniformity without significantly lowering production rates.  This paper describes modeling parameters and simulations for
the current benchmark resist IP3600 and one high-resolution resist (PFI88A5) to demonstrate the principles used to optimize
laser photomask lithography.  The modeling parameters for the other resists were provided to each respective vendor.

The predictions derived from the simulations were tested at the DPI Reticle Technology Center using an ETEC ALTA 3500
pattern generator.  The linewidth and sidewall profiles of the test plates were measured, and the results confirm the predicted
increase in process latitude for linewidths as small as 0.3 µm.  Lithography simulation is clearly a valuable tool for
optimizing the laser photomask fabrication process.
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1. INTRODUCTION

The fabrication of photomasks with smaller and more uniform linewidths is critical for the development of phase-shifting and
optical proximity correction features.  The reticle has been identified as a large contributor of CD error in 0.25 µm DUV
lithography [1].  The extension of DUV lithography through implementation of resolution enhancements like phase shifting
and OPC requires further reduction in the mask critical-dimension error [2].  Optimization of the laser pattern generator
process can reduce photomask CD error and improve resolution.  Lithography simulation and mask fabrication trials have
been utilized to widen the process latitude and improve linewidth control for resist features down to 0.3 µm on production
laser pattern generators.



Significant improvements have been made in I-line resists over the last several years.  Very high-contrast resists have been
formulated through a variety of resist formulation approaches: 1) the “tandem approach”, which utilizes bi-modal novolak
molecular-weight distributions and dissolution rate enhancers [3]; 2) low-polydispersity, highly inhibiting, non-fractionated
novolaks with large inhibiting PACs (photoactive compound) and smaller co-PACs [4]; 3) highly branched novolaks with
controlled end groups that take advantage of the ortho-ortho linkage effects on dissolution inhibition [5,6].  Our goal was to
determine the extent to which the high-performance I-line resist chemistry developed for IC manufacturing could be utilized
to improve laser photomask fabrication.

Lithography simulation was used to optimize the development, post-application bake and post-exposure bake conditions for
I-line resists on photomasks.  I-line resists have been characterized by extracting exposure (A, B and C) and development rate
(R(m)) parameters.  The exposure and development rate parameters were extracted from experiments on AR3 coated
photomask substrates.  The R(m) functions of the high resolution I-line resists contain a "notch" in the dissolution rate
function.  Lithography simulations of photomask resist profiles using these R(m) functions show that higher resolution and
wider process latitude can be achieved through the use of lower developer concentrations, longer development times and
higher exposure doses combined with a post-exposure bake.  The combination of lower developer concentration and longer
development time increases the sidewall angle and minimizes the linewidth sensitivity to dose.  The post-exposure bake is
required to remove the standing waves that are exaggerated in the high contrast resists.  The removal of standing waves in the
resist reduces the linewidth variation in the resist profile and removes undissolved resist close to the photomask surface,
which is referred to as “scumming.”  Manufacturing trials at the Reticle Technology Center (DPI) confirm the simulated
resolution and focus-exposure latitude improvements for resist structures down to 0.3 µm.

2. THEORY

2.1 Resist and Photomask Index of Refraction Measurements

R(m) function determination requires knowledge of the index of refraction of both the resist and substrate.  Photomask
substrates are coated with a graded chromium oxide, chromium and silicon dioxide film stack as shown in Figure 1.

Figure 1: Photomask Film Stack

The index of refraction of the chromium oxide layer varies due to an oxide concentration gradient through the thickness of
the film.  An ellipsometer was used to determine the index of refraction of the substrate as a function of wavelength.  The
polarization change needs to be measured from light reflected perpendicular to the substrate surface for optical thin film
thickness calculations.  An ellipsometer is not capable of making polarization measurements perpendicular to the substrate.
Hence, the composite index of refraction of the substrate was determined from the additive effects of the individual index of
refraction values in each layer of the film stack.  The index of refraction of chromium and silicon dioxide (homogeneous
layers) has been previously measured.  The index of refraction of the chromium oxide layer was extracted from the model by
knowing the total polarization change through the substrate and the polarization effects of the previously characterized layers.
The composite index of refraction of the photomask substrate was then calculated by summing the effects of the index of
refraction in each layer of the film stack.

2.2 Film Thickness Calculations on Photomask Substrates

Thickness measurements of resist films were made by the analysis of the constructive and destructive interference patterns in
reflected light from the film stack as a function of wavelength.  Accurate measurements on mask substrates requires
knowledge of the real and complex index of refraction of both the resist and the substrate, because the substrate absorbs light
in the analysis wavelength range of 500 to 900 nm.  Equation 1 was used to calculate film thickness from the measured
maxima and minima in the reflectivity as a function of wavelength [7]

Chromium Oxide    35 nm

Chromium              70 nm

Silicon Dioxide  6.35 mm
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where d is the film thickness, f is the fringe order, n1 is the real index of refraction of the photoresist, n2 is the real index of
refraction of the mask substrate, k2 is the complex index of refraction of the substrate and λ is the wavelength of the light.
The calculation includes the absorption of light (k2) by the photomask substrate.  The measurement of film thickness on mask
substrates has been included into the capabilities of our multi-wavelength development rate monitor (DRM) [8].

2.3 Resist Exposure Model Parameters

I-line resist modeling requires measurements of the exposure and reaction parameters A, B and C first described by Dill and
co-workers [9].  Our laboratory has established rigorous methods for extracting A, B and C parameters that take into account
the change in the index of refraction of the resist [10].  Exposure parameter extraction was accomplished using software
developed at The University of Texas at Austin as described in previous papers [11,12].

2.4 Development Rate Model Parameters

Resist modeling also requires the measurement of the dissolution rate as a function of film thickness and dose.  These data
are then fit to one of several dissolution rate models that have been developed to support lithography simulators.  The
Enhanced Mack model describes both the enhancement of the dissolution rate by exposed PAC and the inhibition of the rate
by the unexposed PAC [13].  Modern high-resolution I-line photoresists have a "notch" behavior characterized by a sharp
increase in development rate at a critical normalized photoactive-compound concentration.  New development rate models
have been constructed to account for this notch behavior.  A comparison of notch models reveals that the Dammel model [3]
and Notch model [14] provide the best overall fit to experimental dissolution rate data collected for multiple resists [15].  The
Notch model was chosen over the Dammel model for high resolution I-line resist modeling, since it is available in a
commercial simulation package.  The Enhanced Mack and Notch development rate models were used to establish a semi-
empirical relationship between the development rate and the relative PAC concentration.

2.5 Photomask Resist Process Window Optimization

The process window for printing resist features on photomask substrates can be maximized through “line-edge optimization”.
The exposure image and resist dissolution response is evaluated at the bottom of the nominal feature edge. The optimal resist
response occurs when the resist completely dissolves with perpendicular sidewalls while maintaining the nominal linewidth.

The relative PAC concentration (m) can be calculated in any volume element in the film.  The m is calculated by convolving
the aerial image and the resist exposure parameters.  A change in PAC concentration through the horizontal position in the
resist defines a relative PAC gradient (∇m) at the nominal feature edge.  An optimal exposure dose exists that maximizes ∇m
at the nominal resist feature edge.  The optimum process latitude is achieved when the maximum ∇m and the maximum resist
contrast (γR) occur at the same relative PAC concentration (m*), and that concentration is located at the edge of the resist
feature (x*) where R is the dissolution rate of the resist and x is the horizontal direction parallel to the substrate. (Equations 2
and 3).
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The resist contrast is maximized at x* by changing the developer concentration.  A consequence of maximizing the contrast
of a resist is the amplification of standing waves in the resist.  Therefore, a post-exposure bake has been introduced to diffuse
the PAC and reduce standing waves.



3. EXPERIMENTAL

3.1 Photoresist Coating, Post Application Bake and Exposure Conditions

Two photoresists, IP3600 (TOK) and PFI88A5 (Sumitomo), were spin-coated at a thickness of 570 nm on 4 in. diameter by
0.02 in. thick AR3 coated quartz disks from Hoya Corp. using a PWM32 Headway spinner.  A hotplate was built that mimics
the post-application bake temperature-time profile of the surface of a mask blank subject to the PAB cycle at a commercial
coating facility.  The hotplate incorporates a gain scheduled temperature control system that heats the thinner substrate
surface to a temperature vs. time profile that matches that of the thicker commercial substrate.  The system can control the
surface temperature of the center of the substrate to within + 1 °C of the programmed bake profile based on measurements
made with a Thermal Map 2 (Sensarray).  The PAB trajectory is shown in Figure 2.  The divergence in the cooling
temperature between the processes is not expected to interfere with the resist response since the solvent concentration in the
film should not change at the lower bake temperatures [16,17].  The coated photoresist films were exposed with an Oriel 200
W Mercury arc lamp at a wavelength of 365 nm.
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Figure 2: Photomask Post-Application Bake Temperature Profiles

3.2 Index of Refraction Measurements for Photomask Resists and Substrate

The index of refraction of IP3600 and PFI88A5 was measured using a J. A. Woollam Co. Variable Angle Spectroscopic
Ellipsometer (VASE ®) system with WVASE software version 2.92.  The index of refraction was measured between 300 nm
and 1000 nm for both exposed (E) and unexposed (UE) resists on silicon substrates.  The Cauchy coefficients presented in
Table 1 allow calculation of the index of refraction values of each resist at any wavelength between 500 nm and 900 nm.  The
index of refraction was also measured at the exposure wavelength of 365 nm.

Table 1: Resist Index of Refraction Measurements (Cauchy Coefficients)

Resist A B (µµm2) C (µµm4) n at 365nm k at 365nm
IP3600-UE 1.6114 0.0046 0.0020 1.6947 0.0257

IP3600-E 1.5917 0.0102 0.0004 1.6887 0.0031

PFI88A5-UE 1.6024 0.0095 0.0009 1.7006 0.0211

PFI88A5-E 1.5908 0.0108 0.0001 1.6863 0.0010

The Cauchy coefficients are used in the DRM and static thickness analysis tools to measure film thickness.  The index of
refraction data are also used to model the standing waves that occur on mask substrates.

The real and complex parts of the index of refraction of a round AR3 coated Hoya mask substrate were measured by J. A.
Woollam to be 1.63 and 0.28 at 365 nm, respectively.  These values for a 6 × 6 in.2 Hoya production mask were measured to
be 1.38 and 0.44, respectively.  The index of refraction of photomask substrates can vary from sample to sample depending
on the variation in chromium oxide thickness in the AR3 coatings.  The index of refraction must be carefully measured in
order to do precise simulation.



3.3 Exposure Parameter Extraction (ABC)

ABC values were extracted by measuring the transmittance of samples at 365 nm as a function of exposure dose.  The resists
were coated at a film thickness of 570 nm on transparent quartz substrates that were made by etching the chromium layer
from the round Hoya substrates.  The modified Hoya substrates were used for the ABC experiments so that the time
dependent PAB would replicate the PAB used for resists studied in DRM and ellipsometry experiments.  The resists were
baked for 815 seconds with the mask PAB profile (Figure 2).  The ABC values for the resists are shown in Table 2.

Table 2: ABC Exposure Parameters

Resist A (µµm-1) B (µµm-1) C (cm2/mJ)
IP3600 0.8607 0.1074 0.0142

PFI88A5 0.7044 0.0400 0.0105

How accurate are the ABC values?  The absorption coefficient of the resist is related to the complex index of refraction of the
resist at the exposure wavelength.  The complex index of refraction can be calculated from the A and B values at the exposure
wavelength (kunexposed = λ(Α+Β)/(4π)) which can be compared to the complex index of refraction measured by ellipsometry.
The complex index of refraction calculated from the A and B values is very close to the values measured with an ellipsometer
(IP3600: kAB is 0.028 and kELL is 0.026; PFI88A5: kAB is 0.021 and kELL is 0.021).  The close correlation increases our
confidence in the A and B values.

3.4 Simulated Swing Curves for Photomask Resists

The reflectivity swing curves for resists are the result of the interference of transmitted and reflected light at the air-resist and
resist-substrate interfaces.  The propagation of light through the resist depends on the index of refraction of the photomask
substrate, the index of refraction of the resist (k is calculated from Dill's A and B parameters) and the intensity of light
exposing the resist.  The swing curves of IP3600 and PFI88A5 were simulated (PROLITH/2 6.04) to check on the accuracy
of the measurements of the index of refraction of the resist and substrate.  The simulated swing curves are very close to the
swing curves measured by Hoya [18].  The simulated swing curves have reflectivity minima at film thickness around 445 nm
and 555 nm that are close to the commercially measured minima at 460 nm and 570 nm (Figure 3).  The optical constants for
the resist and substrate appear to be sufficiently accurate for further simulation.
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Figure 3: Simulated Swing Curves for IP3600 and PFI88A5

3.5 Standing Waves in Resists on Photomask Substrates

Standing waves cause a periodic variation in m as a function of thickness in the resist.  Unlike most silicon wafer I-line
processes, the current laser photomask writing process does not use a post-exposure bake to diffuse the PAC and remove the
standing waves.  Development rate measurements reveal that standing waves exist in resists on photomask substrates in spite
of the antireflective AR3 coating.  Reducing the developer concentration increases the resist contrast and exaggerates the
effects of standing waves in the resist.  The oscillations in dissolution rate versus resist thickness for IP3600 with 0.20N
TMAH (NMD-W) at a 115 mJ/cm2 dose are evident in Figure 4.  The dissolution rate approaches zero at the destructive
interference nodes.
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Figure 4: DRM Measurements for IP3600 Showing Standing Waves

3.6 Post-Exposure Bake for Laser Photomask Resists

DRM experiments showed that development of IP3600 and PFI88A5 with 0.26N TMAH (NMD-W) requires a PEB at a
steady-state temperature of 114 °C for a minimum of 90 s to remove standing waves.  The PEB temperature is higher than the
normal 110 °C PEB that is recommended for I-line photoresists.  It is hypothesized that the 815 s PAB has depleted more of
the resist solvent and thus increased the glass transition temperature of the resist.  We set the PEB temperature to be 120 °C at
the surface of the mask to insure that the PAC would diffuse.  A Thermal Map 2 (Sensarray) device was used to measure the
surface temperature profile of the mask on a commercial production bake plate set at a 128 °C.  Our hotplate control system
was programmed to mimic this PEB temperature profile measured on the surface of the commercial mask.  The programmed
bake maintains a steady-state minimum temperature above 114 °C for 90 s.  The post-exposure bake temperature profile of a
commercial photomask hotplate was used as a set point trajectory for our programmable hotplate (Figure 5).
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Figure 5: Photomask Post-Exposure Bake Temperature Profile

3.7 R(m) Development Rate Models as a Function of Developer Concentration

R(m) functions were measured for IP3600 and a group of high-resolution I-line resists supplied by Sumitomo, Clariant,
Shipley and Olin using the photomask PAB and PEB profiles in Figures 2 and 5.  The R(m) curves for all the resists
developed with 0.26 N TMAH (vendor recommended developer) show a wide range of dissolution rate responses.  The data
for IP3600 were fit using the Enhanced Mack model, and the other data were fit using the Notch model (Figure 6).  We have
measured the A, B, C and R(m) parameters for all of the supplied resists and transmitted the parameters to the respective
vendors.  To date, we have only studied IP3600 and PFI88A in detail.
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Figure 6: R(m) Curves for Various I-line Resists

All of the resists have a distinct dissolution rate notch except for IP3600.  The notches in resists A, B, E and F are evident at
m concentrations greater than 0.6, which indicates formulation for low-dose responses or high sensitivity.  Low exposure
doses and fast development rates (high throughput) are optimum for lithography on silicon.  Photomask lithography
throughput is limited more by raster write time (hours) than exposure dose and development time.  Line edge optimization
shows that the dissolution rate notch of the resists needs to occur at m* where the ∇m is maximized.  Simulation
(PROLITH2/ 6.04) reveals that the∇m is maximized for IP3600 and PFI88A5 at exposure doses of 210 mJ/cm2 and 260
mJ/cm2, respectively (Figure 7).  Corresponding simulations of the m concentration at the line edge reveals that m* is 0.3 for
IP3600 at the optimum dose of 210 mJ/cm2 (Figure 8).  PFI88A5 also has a maximum ∇m at a m* of 0.3.  The dissolution
rate notch of the resist needs to be located at or near a m* of 0.3 to optimize resolution.  Therefore, we chose to focus on the
photomask benchmark resist IP3600 and PFI88A that have dissolution rate notches at a m closest to the optimal m* of 0.3.
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∇m at the Edge of the Resist Feature occurs at an m* of 0.3 for IP3600 (210 mJ/cm2)

The location of the notch of each of the resists can be moved closer to the location of the optimum PAC gradient through the
use of lower developer concentration.  R(m) functions were extracted from IP3600 and PFI88A5 films developed with several
developer concentrations (NMD-W) shown in Figures 9 and 10, respectively.
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PFI88A5 shows a larger development notch than IP3600 in the R(m) data for both 0.26N TMAH and 0.23N TMAH.  The
sharp notch indicates a high theoretical contrast that should result in a steeper sidewall angle and ultimately an increase in the
focus-exposure process latitude over IP3600.  Lower developer concentration shifts the development rate response to higher
doses (lower m).  The optimum developer concentration was chosen to place the dissolution rate notch at a m* of 0.3 where
the ∇m is maximum.

3.8 Simulated Standing Waves in IP3600 without a PEB

Simulation (PROLITH/2 6.04) of a 0.5 µm isolated space exposed in IP3600 with an 80 mJ/cm2 dose and developed with
0.26N TMAH developer concentration reveals standing waves.  The simulated resist profile has 5 low dose nodes (standing
waves) where the development is very slow (Figure 11).  The standing waves produce scumming, poor sidewall angles and
poor CD sensitivity to dose.  Simulation of IP3600 resist profiles using a post-exposure bake with an estimated 50 nm
diffusion length reduces the standing waves (Figure 12).  The reduction of standing waves is predicted to reduce scumming
and improve the focus-exposure process window.

Figure 11: Simulated IP3600 Isolated Resist Space Developed over Time (s) without a PEB

Figure 12: Simulated IP3600 isolated resist space developed over time (s) with a PEB

Manufacturing trials at DPI Reticle Technology Center (RTC) confirmed that the post-exposure bake process removes
standing waves in IP3600.  Focus-exposure (9 × 9) test patterns were exposed in IP3600 and developed with 0.23N TMAH
(TOK brand developer: NMD-W) for 90 s with and without PEB.  An inspection SEM (JEOL JWS-7815) was used to make
linewidth measurements and examine the resist profiles.  The resist profiles of 0.5 µm isolated spaces at the best dose (110
mJ/cm2) reveal that the post-exposure bake removed the scumming throughout focus (Figure 13).  The resist scumming is due
to undeveloped resist located in the region of low dose of the standing wave.  Close inspection of "X-features" at best focus
reveals that the sidewall variations due to standing waves are removed by the post-exposure bake.  The use of a post-
exposure bake for photomask fabrication at RTC confirmed the predictions of the simulations and improved the focus-
exposure process latitude.

Focus: -0.4 µm/ No PEB Focus: 0 µm/ No PEB Focus: +0.4 µm/ No PEB



Focus: -0.4 µm/ PEB Focus: 0 µm/ PEB Focus: +0.4 µm/ PEB

Figure 13: Photomask Post-Exposure Bake Improves Focus-Exposure Process Latitude (IP3600)

3.9 Process Window Simulations for IP3600 and PFI88A5

The SEM pictures reveal that the current photomask process using optical pattern generators without a post-exposure bake
has a limited process window below 0.5 µm.   Simulations of 0.5 µm IP3600 (isolated spaces) resist profiles developed with a
0.20N TMAH developer concentration reveal a larger exposure dose-development time process window than profiles
developed with 0.26N TMAH (Figure 14 and 15).  The simulated process window has highlighted the isolated resist features
that have a 82º+ sidewall angle and a ± 5% linewidth latitude for a 0.5 µm optical pattern generator aerial image.  The lower
developer concentration, higher exposure doses and longer development times result in better sidewall angles and less
linewidth sensitivity to dose, which produces a larger process window.  Lower developer concentration should also minimize
resist loss in the unexposed regions.

Figure 14: IP3600/ 0.26N TMAH/ No PEB Figure 15: IP3600/ 0.20N TMAH/ PEB

Simulation of 0.5 µm PFI88A5 (isolated spaces) resist profiles developed with a 0.26N TMAH developer concentration
reveals a larger process window than IP3600 (Figures 16 and 17).  The increase in the PFI88A5 process window is due to the
higher theoretical contrast produced from the notch in the R(m) function and larger ∇m at higher exposure dose.  Simulations
of the PFI88A5 developed using a lower developer concentration of 0.23N TMAH further increased the exposure-
development process latitude.



Figure 16: PFI88A5/ 0.26N TMAH/ PEB Figure 17: PFI88A5/ 0.23N TMAH/ PEB

Manufacturing trials at DPI (RTC) confirmed the simulated process latitude results for each resist.  IP3600 (0.20 N TMAH/
180 s dev./ PEB) and PFI88A5 (0.26N TMAH/ 180 s dev./ PEB) both showed dramatic focus-exposure process latitude
improvements over IP3600 (0.26N TMAH/ 60 s dev./ No PEB) for 0.5 and 0.3 µm features.  IP3600 (0.26N TMAH/ no PEB)
is scummed even at best focus for a 0.3 µm isolated space.  PFI88A5 (0.26N TMAH/ PEB) revealed the highest resolution
with a clear 0.25 µm isolated space at best focus.  A summary of the Bossung plots of IP3600 and PFI88A5 are in Table 3
(Figures 18-23).   SEM pictures of isolated spaces for IP3600 and PFI88A5 are in Figures 24-29.

Table 3: Focus-Exposure Process Latitude Improvements for IP3600 and PFI88A5

IP3600  0.5 µµm
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Figure 18: IP3600 (0.5 µµm /0.26N/ Figure 19: IP3600 (0.5 µµm /0.20N/ Figure 20: PFI88A5 (0.5 µµm /0.26N/
60 s dev./ No PEB) 180 s dev./ PEB) 180 s dev./ PEB)
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Figure 21: IP3600 (0.3 µµm/ 0.26N/ Figure 22: IP3600 (0.3 µµm / 0.20N/ Figure 23: PFI88A5 (0.3 µµm / 0.26N/
60 s dev./No PEB) 180 s dev./ PEB) 180 s dev./ PEB)

Figure 24: IP3600 (0.5 µµm/ 0.26N/ Figure 25: IP3600 (0.5 µµm / 0.20N/ Figure 26: PFI88A5 (0.5 µµm / 0.26N/
60 s dev./No PEB) 180 s dev./ PEB) 180 s dev./ PEB)

Figure 27: IP3600 (Scum 0.30 µµm Figure 28: IP3600 (0.31 µµm Figure 29: PFI88A5 (0.25µµm
/ 0.26N/60 s dev./ No PEB) / 0.20N/180 s dev./ PEB) 0.26N/ 180 s dev./ PEB)

4. CONCLUSIONS

Lithography simulation and line-edge optimization have been utilized to improve the process latitude and resolution for I-line
optical pattern generators (ALTA 3500).  The use of high-resolution resists, high exposure energies, lower developer
concentration, long development times and a post-exposure bake improves the process latitude for resist features on
photomask substrates.  These process improvements lead to better sidewall angles and less CD sensitivity to dose.
Manufacturing trials confirmed the process latitude improvements.  These changes enable printing with control for resist
profiles down to 0.3 µm.  The resist profile improvement should reduce the etch bias since there is less need for a descum and
breakthrough etch.  The use of lower developer concentrations and further bake optimization can potentially lead to further
increases in the process window for laser photomask fabrication.
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