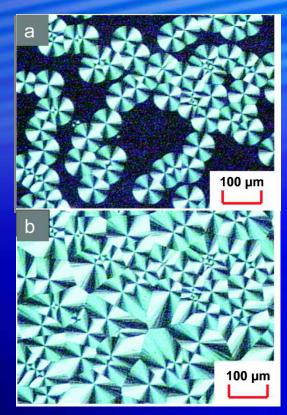

Crystallinity in Polymers


Brandon Rawlings February 12, 2009

Crystalline Structures

Single Crystals

Polymer Spherulites

Sharmistha Datta & David J. W. Grant, *Nature Reviews Drug Discovery* 3, 42-57 (January 2004)

Physical State Transitions

Amorphous Polymer Crystalline Polymer

Crystalline Structures

Spherulite Morphology

Folding and "Re-entry"

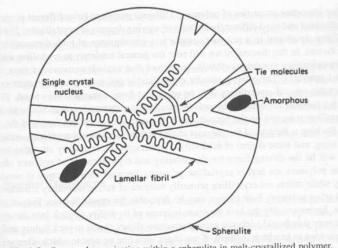
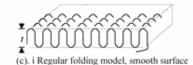
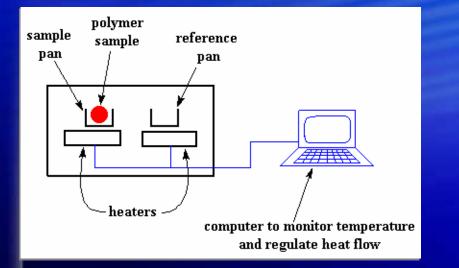
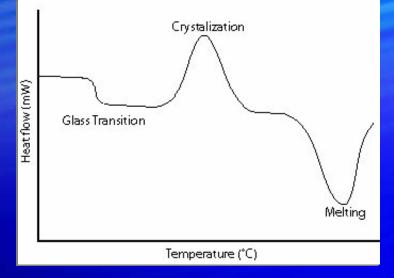



Fig. 1-8 Structural organization within a spherulite in melt-crystallized polymer.

Amorphous phase Crystal -(a). Bundlelike model

(b). Switchboard model

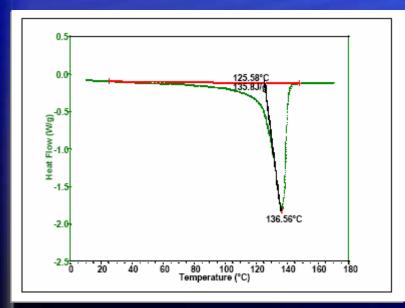

(c). ii Regular folding model, rough surface


Youyong Li and William A. Goddard III Macromolecules 2002 35 (22), 8440-8455

(from Odian)

Crystallinity by DSC

Experiment Setup

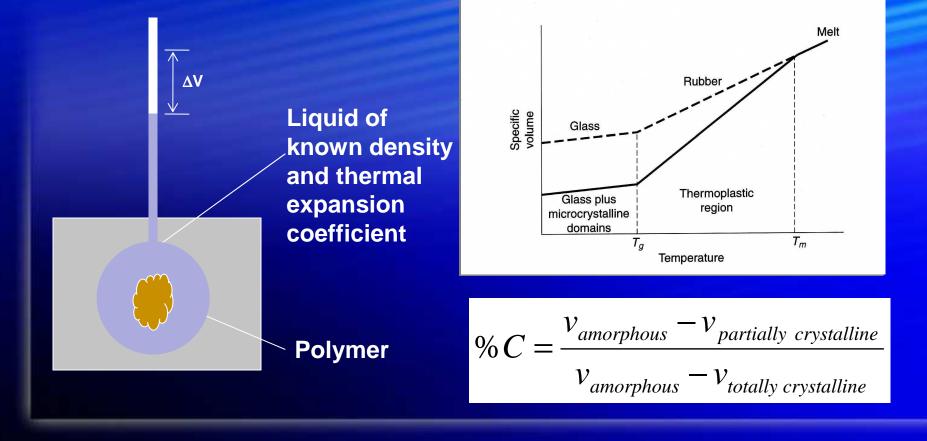


Crystallinity by DSC

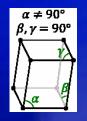
 Example: Crystallinity of Polyethylene

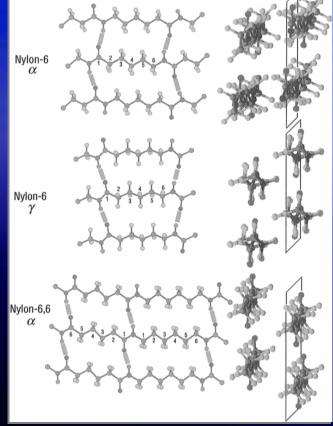
$$\% Crystallinity = \frac{\Delta H_f^{obs}}{\Delta H_f^{\circ}} \times 100\%$$

Table: Heats of fusion of 100% crystalline polymers


Acronym	Name	Enthalpy	Repeat Unit	Molecular	Enthalp
(4)		(kJ/mol)		Weight	(J/g)
		(3)		(g/mol)	
PE	Polyethylene	4.11	-CH2-	14.03	293
PP	Polypropylene	8.70	-CH ₂ CH(CH ₃)-	42.08	207
PB	Polybutene-1	7.00	-CH ₂ CH(C ₂ H ₅)	56.1	125
POM	Polymethylenoxide	9.79	-CH2O-	30.03	326
PEOX	Polyethyleneoxide	8.66	-CH ₂ CH ₂ O-	44.05	197
PA6	Polycaprolactam	26.0	-NH(CH ₂) ₅ CO-	113.2	230
PA11	Polyundecanolactam	44.7	-NH(CH ₂) ₁₀ CO-	183.3	244
PA12	Polylauryllactam	48.4	-NH(CH ₂) ₁₁ CO-	197.3	245
PA66	Poly(hexamethylene adipamide)	57.8	-NH(CH ₂) ₆ NHCO(CH ₂) ₄ CO-	256.3	226
PA69	Poly(hexamethylene nonanediamide)	69	-NH(CH ₂) ₆ NHCO(CH ₂) ₇ CO-	268.4	257
PA610	Poly(hexamethylene sebacamide)	71.7	-NH(CH ₂) ₆ NHCO(CH ₂) ₈ CO-	282.4	254
PA612	Poly(hexamethylene dodecanediamide)	80.1	-NH(CH ₂) ₆ NHCO(CH ₂) ₁₀ CO-	310.5	258
PVOH	Polyvinyl alcohol	7.11	-CH ₂ CH(OH)-	44.05	161
PET	Polyethylene terephathalate	26.9	-O(CH ₂) ₂ O ₂ CC ₆ H ₄ CO-	192.2	140
PBT	Polybutylene terephathalate	32.0	-O(CH ₂) ₄ O ₂ CC ₆ H ₄ CO-	220.2	145
PVF	Polyvinyl fluoride	7.54	-CH ₂ CH(F)-	46.04	164
PVDF	Polyvinylidene fluoride	6.70	-CH ₂ CF ₂ -	64.03	105
	Polytrifluoroethylene	5.44	-CH(F)CF2-	82.0	66.3
PTFE	Polytetrafluoroethylene	4.10	-CF ₂ -	50.0	82.0
PVC	Polyvinyl chloride	11.0	-CH ₂ CH(Cl)-	62.50	176
PCTFE	Polychlorotrifluoroethylene	5.02	-CF2CF(Cl)-	116.5	43.1
PEEK	Polyetheretherketone	37.4	-C6H4COC6H4OC6H4O-	288.3	130

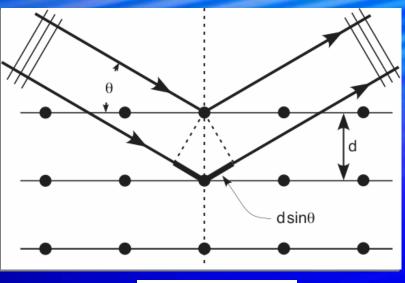
Q: "Where is my polymer in this table?"




Dilation or change in specific volume

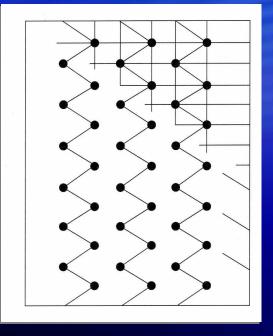
Computing crystallinity

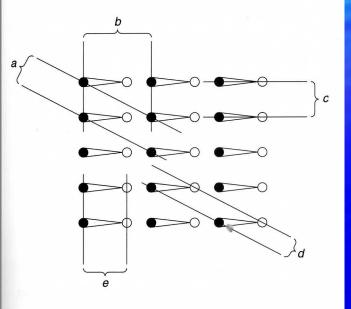
Dilatometry



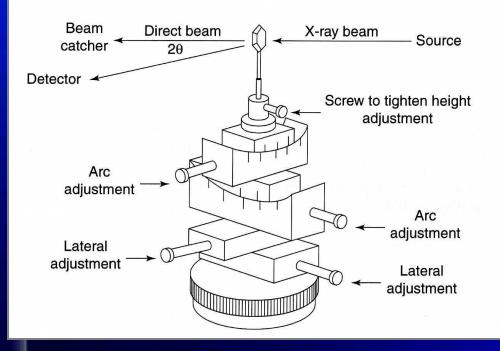
Youyong Li and, William A. Goddard III Macromolecules 2002 35 (22), 8440-8455 Example: Nylon
How would you find the density (i.e. specific volume) of this crystal given the size and shape?

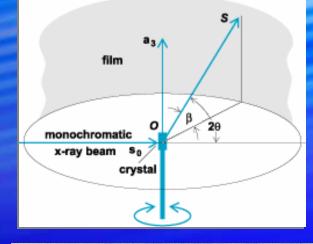
$$%C = \frac{v_{amorphous} - v_{partially crystalline}}{v_{amorphous} - v_{totally crystalline}}$$

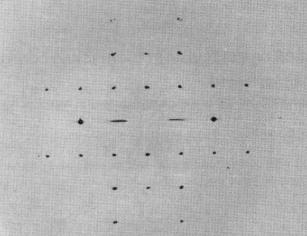

Wide angle x-ray scattering/diffraction


- X-rays: light with wavelength ~0.1-10Å – the same length scale as interatomic distances
- Diffraction occurs only at specific angles, given by the Bragg eqn.

 $n\lambda = 2d\sin\theta$

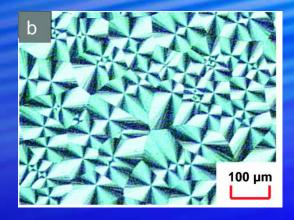

X-ray Scattering Crystal Planes

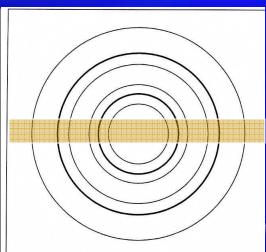




Wide angle x-ray scattering/diffraction

Why 2θ?

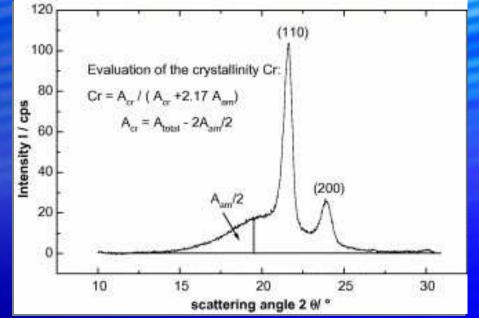

What if it's not a single crystal?


- Polycrystalline samples look different.
- Example: Highly crystalline polymer with (mostly) oriented crystallites.
- Diffraction spots are blurred into lines.

// - \\\ //// \\\\\ 111 111 \\\\\\ \\\ _ //////

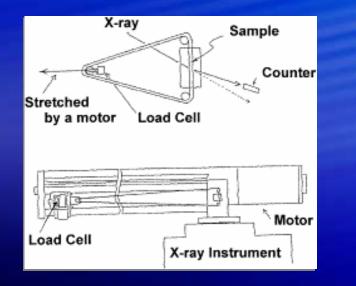
What if it's not a single crystal?

- Polycrystalline samples look different.
- Example: Highly crystalline polymer with no orientation of crystallites.
- Diffraction spots are blurred into full circles.


What if it's not crystalline?

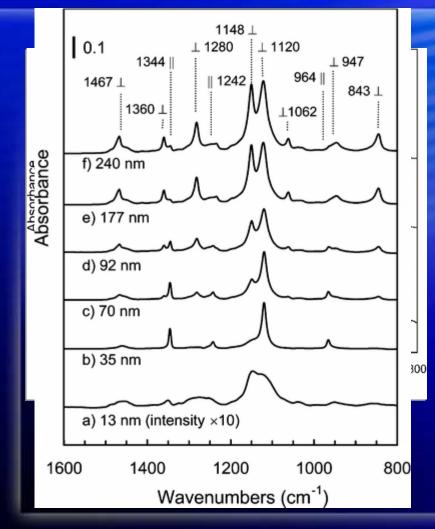
- Diffraction circles become much less defined and blurred.
- Sharpness of circles gives a clue to crystallinity.

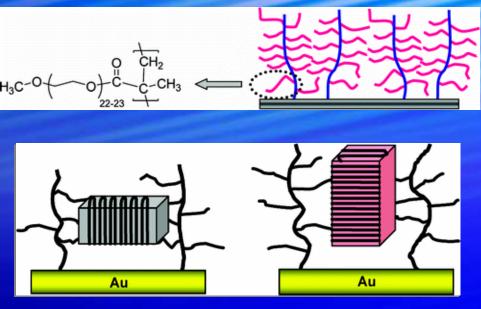
An estimate of crystallinity


 The crystallinity can be estimated by comparing the areas of the peaks due to the amorphous polymer with those of the crystalline phase:


%C=
$$A_{cr} / (A_{cr} + A_{am})$$

K.A. Moly et al. / European Polymer Journal 41 (2005) 1410–1419;


Example: Strain-induced Crystallization



S. Toki et al. / Polymer 41 (2000) 5423– 5429

Other methods: IR & NMR

Ying Zheng,, Merlin L. Bruening, and, Gregory L. Baker *Macromolecules* 2007 40 (23), 8212-8219

Conclusion: A comparison

Method of Analysis	Advantages	Disadvantages
Differential Scanning Calorimetry	Fast, easy; You're probably going to use DSC anyway for T _g , etc.	Need literature values of heat of fusion for 100% crystalline polymer for comparison; thermal history an issue.
Dilatometry	A simple way to measure polymer crystallinity based on changes in volume.	Pure crystalline specific volume must be known.
X-ray scattering	Can determine precise crystal structure.	Difficult to analyze data, determine structure.
Polarized Optical Microscopy	A quick way to see if a polymer is crystalline.	Other factors (like strain in the polymer) can cause birefringence; difficult to quantify.

Conclusion

 Offshoot: A combination of methods may be the best solution (e.g. x-ray scattering, DSC)

- Polymer crystallinity contributes to the strength of many polymeric materials.
- Questions?