Capillary Fill Time & Meniscus Shape:

A non-symmetric, non-equal contact angle, coplanar cavity study

Matt Colburn Surface Phenomena Project December 1, 1998

Problems:

- What is the shape of the meniscus as it traverses a wavy cavity?
- How does the fluid properties and the system geometry affect the fill time?

Motivation:

- Nanoimprint lithography techniques under development at UT, Harvard, Princeton require a fluid to fill a cavity that is not planar.
- Production speeds require a fill time of ~1 second.

What is the surface tension contribution?

How does the fluid affect is?

- Rate of Fill $\propto 1/\mu$
- Rate of Fill $\propto \gamma$

How does the "wavy" surface affect it?

Requires more insight into the geometry!!!

Fill Time Prediction:

Washburn Equation for Cylindrical Capillary $\frac{dx}{dt} = \frac{2\pi R\gamma \cos\theta + \pi R^2 P}{8\pi\mu x}$

Washburn Equation for Planar Cavity

Model System:

<u>*Fluid Properties*</u>: μ , θ_1 , θ_2 , γ

Model Assumptions:

- Constant Contact Angles
- Newtonian Fluid
- Constant Density
- Pressure at Inlet ∝ Height of Feed
- Height of Feed ∝ Volume of Cavity

Assumptions Con't:

Experimental System	Model
1:1:1 solvent: monomer: polymer	Newtonian Fluid of constant viscosity and
	density
Top plate has anisotropic etched pattern of	Sinusoidal pattern of amplitude, _{O2} and
depth, 2_{0} , and period, λ .	wavelength, λ .
Plates are 1 square inch.	Plates of length (L), 2.5 cm Neglect Edge
	effects.
Slightly non-coplanar plates	Coplanar plates
$0^{\circ} <_{\Theta^{1}} < 30^{\circ}$	$\theta^1 = 30^{\circ}$
$50^{\circ} < \theta^{\circ} < 90^{\circ}$	$\theta^2 = 60^\circ$
Fluid feed by a convex drop of radius R' on	Fluid feed with fluid height, D. Initially D=
one edge.	L*H/1 microns

Defined Surfaces:

Upper Surface

$$s(t) = t\overline{i} + (H + \alpha \sin(\frac{2\pi x}{\lambda}))\overline{j}$$

Lower Surface

$$g(\gamma) = \gamma \overline{i}$$

Meniscus

$$\eta(\beta, \gamma) = (x_c(\gamma) + R\cos(\beta))\vec{i} + (y_c(\gamma) + R\sin(\beta))\vec{j}$$

Model Method: A Shooting Approach

• Increase radius until the meniscus and the upper surface touch.

• Calculate the dot product and check constraint is met.

Model Constraints:

Contact Angles, $\theta_1 \& \theta_2$ must be met.

$$\cos \theta_2 = -\frac{\left[(2\pi A / \lambda) \cos \beta_s \cos(\frac{2\pi t}{\lambda}) - \sin \beta_s \right]}{\left[1 + ((\frac{2\pi A}{\lambda}) \cos(\frac{2\pi t}{\lambda}))^2 \right]^{/2}}$$

$$\cos(\theta_1) = -\sin(\beta_1)$$

Radius Along Path II:

Radius of Curvature Along Length of Cavity

Radius Along Path:

Radius of Curvature During Fill $H = 0.2, \alpha = 0.1, \lambda = 0.2$

Meniscus Shape During Fill:

Added Complexity: *Multiple Solutions*

Minimum Radius Solution:

Meniscus Location During Fill

Location of Meniscus During Fill Process H = 1 μ m, α = 0.1 μ m, λ = 0.1 μ m

Fill Time For Different Viscosities & Surface Tensions:

Fill times (seconds)

Viscosity (P)	H=1, α=0.1, λ = 0.2	H=1, _α =0.1, _λ = 0.1	H=0.2, α=0.1, λ = 0.2	H=0.2, α=0.1, λ = 0.1
0.001	28.56	15.12	112	56
0.01	285.6	151.2	1120	560
0.1	2856	1512	11200	5600
1	28560	15120	112000	56000

Fill times (seconds)

Viscosity	γ = 30 dynes/cm	γ = 50 dynes/cm	γ = 70 dynes/cm
0.01	8	4.8	3.4
0.1	80	48	34.3
1	800	480	342.9

Lower μ , higher γ , small λ provides fastest fill time.

Unsatisfactory for production photolithography rates.

Conclusions:

- Smaller wavelengths fill faster than longer wavelengths due to affects on radius of curvature.
- Higher surface tension and lower viscosity improve fill times.
- Considering only capillary action, fill times are too slow for production use.

Future Improvements:

- Improve computational time.
- Eliminate contact angle dependence, use specific surface energies of different surfaces to predict performance.
- Look at free energy of entire system as it traverses the cavity.
- Add non-uniformity of surface energy along treated *wavy* surface.