Capillary Fill Time \& Meniscus Shape:

A non-symmetric, non-equal contact angle, coplanar cavity study

Matt Colburn
Surface Phenomena Project
December 1, 1998

Problems:

. What is the shape of the meniscus as it traverses a wavy cavity?

- How does the fluid properties and the system geometry affect the fill time?

Motivation:

- Nanoimprint lithography techniques under development at UT, Harvard, Princeton require a fluid to fill a cavity that is not planar.
- Production speeds require a fill time of ~ 1 second.

What is the surface tension contribution?

I How does the fluid affect is?
\| Rate of Fill $\propto 1 / \mu$
$\|$ Rate of Fill $\propto \gamma$
. How does the "wavy" surface affect it?
\| Requires more insight into the geometry!!!

Fill Time Prediction:

I. Washburn Equation for Cylindrical Capillary

$$
\frac{d x}{d t}=\frac{2 \pi R \gamma \cos \theta+\pi R^{2} P}{8 \pi \mu x}
$$

- Washburn Equation for Planar Cavity

$$
\frac{d x}{d t}=\frac{(\gamma / R)}{(24 \mu x) / H^{2}}
$$

Model System:

Fluid Properties: $\mu, \theta_{1}, \theta_{2}, \gamma$

Model Assumptions:

II Constant Contact Angles
\| Newtonian Fluid

- Constant Density
\| Pressure at Inlet \propto Height of Feed
- Height of Feed \propto Volume of Cavity

Assumptions Con't:

Experimental System	Model
$1: 1: 1$ solvent: monomer: polymer	Nextonian Fluid of constant viscosity and density
Top plate has anisotropic etched pattern of depth, $2_{\alpha^{c}}$ and period, λ.	Sinusoidal pattern of amplitude,,∞ and wavelength, λ
Plates are 1 square inch.	Plates of length (L), 2.5 cm Neglect Edge effects.
Slightly non-coplanar plates	Coplanar plates
$0^{\circ}<\theta_{1}<30^{\circ}$ $50^{\circ}<\theta^{\circ}<90^{\circ}$	$\theta^{1}=30^{\circ}$ $\theta^{\circ}=60^{\circ}$
Fluid feed by a convex drop of radius R' on one edge.	Fluid feed with fluid height, D. Initially D $=$ $L^{*} H / 1$ microns

Defined Surfaces:

Upper Surface

$$
s(t)=t \vec{i}+\left(H+\alpha \sin \left(\frac{2 \pi x}{\lambda}\right)\right) \vec{j}
$$

Lower Surface

$$
g(\gamma)=\gamma \vec{i}
$$

Meniscus

$$
\eta(\beta, \gamma)=\left(x_{c}(\gamma)+R \cos (\beta)\right) \vec{i}+\left(y_{c}(\gamma)+R \sin (\beta)\right) \stackrel{\rightharpoonup}{j}
$$

Model Method: A Shooting Approach

- Increase radius until the meniscus and the upper surface touch.
- Calculate the dot product and check constraint is met.

Model Constraints:

II Contact Angles, $\theta_{1} \& \theta_{2}$ must be met.

$$
\begin{gathered}
\cos \theta_{2}=-\frac{\left[(2 \pi \boldsymbol{A} / \lambda) \cos \beta_{s} \cos \left(\frac{2 \pi t}{\lambda}\right)-\sin \beta_{s}\right]}{\left[1+((2 \pi \boldsymbol{A} / \lambda) \cos (2 \pi t / \lambda))^{2}\right]^{1 / 2}} \\
\cos \left(\theta_{1}\right)=-\sin \left(\beta_{1}\right)
\end{gathered}
$$

Radius Along Path II:

Radius of Curvature Along Length of Cavity

Radius Along Path:

Radius of Curvature During Fill

$$
H=0.2, \alpha=0.1, \lambda=0.2
$$

Meniscus Shape During Fill:

Meniscus Shape During Fill Time

Position Along Cavity

Added Complexity: Multiple Solutions

Multiple solutions to Meniscus Shape

$$
\mathbf{H}=1.0, \alpha=0.1, \lambda=0.2
$$

Minimum Radius Solution:

Meniscus Shape During Fill With Minimum Radius Solution

Position Along Cavity

Meniscus Location During Fill

Location of Meniscus During Fill Process

$$
\mathrm{H}=1 \mu \mathrm{~m}, \alpha=0.1 \mu \mathrm{~m}, \lambda=0.1 \mu \mathrm{~m}
$$

Fill Time For Different Viscosities \& Surface Tensions:

Fill times (seconds)

Viscosity (P)	$H=1, \alpha=0.1, \lambda=0.2$	$H=1, \alpha=0.1, \lambda=0.1$	$H=0.2, \alpha=0.1, \lambda=0.2$	$H=0.2, \alpha=0.1, \lambda=0.1$
0.001	28.56	15.12	112	56
0.01	285.6	151.2	1120	560
0.1	2856	1512	11200	5600
1	28560	15120	112000	56000

Fill times (seconds)

Viscosity	$\gamma=30$ dynes $/ \mathrm{cm}$	$\gamma=50$ dynes $/ \mathrm{cm}$	$\gamma=70$ dynes $/ \mathrm{cm}$
0.01	8	4.8	3.4
0.1	80	48	34.3
1	800	480	342.9

Lower μ, higher γ, small λ provides fastest fill time.

Unsatisfactory for production photolithography rates.

Fill Time:

Viscosity \& Surface Tension Effect on Fill

Viscosity (P)

Surface Tension (dyne/cm)

$\square 80000-100000$
$\square 60000-80000$
$\square 40000-60000$
$\square 20000-40000$
$\square 0-20000$

Fill Time (sec)

Conclusions:

- Smaller wavelengths fill faster than longer wavelengths due to affects on radius of curvature.
- Higher surface tension and lower viscosity improve fill times.
- Considering only capillary action, fill times are too slow for production use.

Future Improvements:

\|Improve computational time.
I Eliminate contact angle dependence, use specific surface energies of different surfaces to predict performance.

- Look at free energy of entire system as it traverses the cavity.
I Add non-uniformity of surface energy along treated wavy surface.

