
A Proof that the Divergence of a Surface Normal Is

Equal to the Sum of the Principal Curvatures

Patience Henson

May 5, 2000

Motivation

In solving problems that include an interface it is often important to calculate the change
in pressure, �P , across the interface. The Young-Laplace equation tells us that when the
interface is modelled as a curve

�P = 
r � n = 
�

and when the interface is modelled as a surface

�P = 
r � n = 
(�1 + �2):

Here, 
 is the surface tension, n is the normal to the curve or surface, and � and �1 and �2
are curvatures for the curve and surface. The curvatures can also be written as the reciprocal
of the radii of curvature. Considering the di�erent forms for the Young-Laplace equation
leads to the question of how one might show that the two formulations are equivalent. In
other words, we would like to show mathematically that

r � n = �1 + �2

as an alternative to deriving the Young-Laplace equation for the two separate forms.

Statement of problem

Let a curve, h : R! R, in two dimensions and a surface, f : R2 ! R in three dimensions be
de�ned by y = h(x) and z = f(x; y) respectively. Let each of these functions have continuous
second derivatives. Then in two dimensions, the divergence of the normal to the curve is
equal to the curvature. That is,

r � n = �:

In three dimensions, the divergence of the normal to the surface is equal to the sum of the
principal curvatures. The principal curvatures are de�ned as the maximum and minimum
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of all two dimensional curvatures found by considering the intersection of the surface and a
plane that contains the surface normal. Or, more simply,

r � n = �1 + �2:

Proof of statement

Case 1: Two dimensions

De�ne the normal and calculate its divergence in the following way.

F (x; y) = y � h(x)

n =
rF (x; y)

jrF (x; y)j =
ey � hx(x)exq
1 + hx(x)2

r � n = �hxx(x)(1 + hx(x)
2)�1=2 + hx(x)(1 + hx(x)

2)�3=2hx(x)hxx(x)

=
�hxx(x)� hxx(x)hx(x)

2 + hx(x)
2hxx(x)

(1 + hx(x)2)3=2

=
�hxx(x)

(1 + hx(x)2)3=2

Note that the computations utilize the outward normal.
Most calculus books de�ne the curvature of a curve as a positive number.

� =

�����d�ds
�����

Here � is the angle between the horizontal and the tangent to the curve. We di�erentiate
� with respect to the arc length, s, to de�ne the curvature. For our purposes we would like
to have a signed curvature so we begin without the absolute values.

� =
d�

ds
d�

dx
=

d�

ds

ds

dx

� = tan�1
dy

dx
= tan�1 hx(x)

d�

dx
=

hxx(x)

1 + hx(x)2

ds

dx
=

d

dx

Z x

0

q
1 + hx(�)2d� =

q
1 + hx(x)2

� =
d�=dx

ds=dx
=

hxx(x)

1 + hx(x)2
1q

1 + hx(x)2
=

hxx(x)

(1 + hx(x)2)3=2
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x

φ
h(x)

slope=dy/dx

The proof is complete except for a di�erence in sign. However, in considering the normal to
a surface, there is a choice to be made on whether to consider the inward or outward normal.
As noted above we are interested in the outward normal. Likewise, we must choose a sign
for the curvature. By convention, we will choose postive curvature to correspond to a curve
that is concave down. For a curve that is concave down

hxx � 0:

Therefore,

� =
�hxx

(1 + h2x)
3=2

gives the desired sign and completes the proof.

Case 2: Three Dimensions

In three dimensions, there is more than one curvature at a point x0. In fact, there are in-
�nitely many planes that contain the normal to the surface at x0 and the interection of each
of these planes with the surface de�nes a two dimensional curve and a corresponding curva-
ture. To �nd the principal curvatures, the maximum and minimum of the set of curvatures
described above, we would expect to calculate the curvature in a particular direction and
then minimize and maximize over direction. The algebra needed to accomplish this directly
is quite messy. In order to simplify this algebraic computation we will �rst note that the
identity,

r � n =
1

�1
+

1

�2

in Cartesian coordinates does not depend on the location of the coordinate axes. Therefore
we can rotate and translate the x-y-z-axes as we please. In particular, we �rst �x a point
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where we will calculate the curvatures and the divergence of the normal, x0 = (x; y; f(x; y)).
Next we rotate and translate the coordinate axes so that the x� y plane corresponds to the
plane tangent to f at x0. We will call this new set of axes, u; v; w as shown in the following
picture.

Note that this new set of axes has the following properties:

f(0; 0) = 0

fu(0; 0) = 0

fv(0; 0) = 0

where (0; 0; 0) in the u-v-w system corresponds to x0 in the x-y-z system. This set of axes
also has the property that the normal to the surface at 0 coincides with the w-axis. Because
of this, any plane that contains the normal also contains the line v = ru for some r and this
line is perpendicular to the normal. This will considerably simplify the computations for the
rest of the proof.

First, we will prove that the directions corresponding to the principal curvatures are
perpendicular to each other. The u-v-w system allows us to reduce our problem to two
dimensions very easily. We simply choose a direction in which we want to calculate the
curvature and substitute v = ru as mentioned above with r corresponding to the chosen
direction. This gives a curve that lies in a plane containing the normal to the surface. In
particular

w = f(u; ru):
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Calculating the curvature for this curve, we must be careful to di�erentiate f in the direction
corresponding to r. We can parameterize f in this direction with a variable t given by the
following.

t2 = u2 + v2 = u2(1 + r2)

u2 =
t2

r2 + 1
du

dt
=

1p
r2 + 1

w = f(u; ru) = f(t=
p
1 + r2; rt=

p
1 + r2):

Calculate the curvature in the r direction.

�r =
d�

ds
d�

dt
=

d�

ds

ds

dt

� = tan�1
dw

dt
= tan�1

fu(u; ru) + kfv(u; ru)p
1 + r2

d�

dt
=

1

1 + (fu(u;ru)+rfv(u;ru))2

1+r2

fuu(u; ru) + 2rfuv(u; ru) + r2fvv(u; ru)

1 + r2

=
fuu(u; ru) + 2rfuv(u; ru) + r2fvv(u; ru)

1 + r2 + (fu(u; ru) + rfv(u; ru))2

ds

dt
=

d

dt

Z u

0

s
1 +

(fu(�; r�) + rfv(�; r�))2

1 + r2

p
1 + r2d� =

s
1 +

(fu(u; ru) + rfv(u; ru))2

1 + r2

�r =
d�=dt

ds=dt
=

fuu(u; ru) + 2rfuv(u; ru) + r2fvv(u; ru)

1 + r2 + (fu(u; ru) + rfv(u; ru))2

p
1 + r2q

1 + r2 + (fu(u; ru) + rfv(u; ru))2

Substituting t = 0 and using the fact that fu(0; 0) = fv(0; 0) = 0, we obtain the curvature
of the surface at 0 in the r direction.

�r =
fuu(0; 0) + 2rfuv(0; 0) + r2fvv(0; 0)

1 + r2

For the following calculations we will set

a = fuu(0; 0)

b = 2fuv(0; 0)

c = fvv(0; 0)
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which are constants. The next step is to �nd the critical points of the curvature at 0 over
the direction, r.

d�r

dr
=

d

dr

 
a+ br + cr2

1 + r2

!
=

b+ 2cr

r2 + 1
� (a + br + cr2)(2r)

(r2 + 1)2

=
br2 + 2cr3 + b + 2cr � 2ar � 2br2 � 2cr3

(r2 + 1)2

=
�br2 + (2c� 2a)r + b

(r2 + 1)2

Setting this equal to zero, we obtain a quadratic polynomial in r

0 = �br2 + (2c� 2a)r + b

Suppose r0 satis�es this equation. Then,

�b
r20
� (2c� 2a)

r0
+ b =

�1
r20

(b+ (2c� 2a)r0 � br20) = 0

shows that �1=r0 satis�es the equation also, proving that the directions of the principal
curvatures are perpendicular to each other. Solving for these roots

r =
(2a� 2c)�

q
(2a� 2c)2 + 4b2

�2b

=
c� a

b
�
s�

a� c

b

�2

+ 1

Therefore the directions of maximum and minimum curvature on the u-v-w axes at 0 are
given by

r =
fvv(0; 0)� fuu(0; 0)

fuv(0; 0)
�
vuut fuu(0; 0)� fvv(0; 0)

fuv(0; 0)

!2

+ 1

evaluated at zero. The sum of principal curvatures which are given by directions, r;�1=r is

�1 + �2 =
a + br + cr2

r2 + 1
+

a� b=r + c=r2

1=r2 + 1

=
a + br + cr2 + ar2 � br + c

r2 + 1

=
(a + c)(r2 + 1)

r2 + 1
= a + c

= fuu(0; 0) + fvv(0; 0)
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As in two dimensions, we must choose a sign for the curvatures that corresponds to the chosen
convention that positive curvature corresponds to a curve that is concave down. Therefore,

�1 + �2 = �fuu(0; 0)� fvv(0; 0):

Now we need only calculate the divergence of the normal in the u-v-w coordinate system at
zero.

r � n = r �
0
@�fueu � fvev + ewq

1 + f 2
u + f 2

v

1
A

=
�fuu � fvvq
1 + f 2

u + f 2
v

+
fu(fufuu + fvfuv) + fv(fufuv + fvfvv)

(1 + f 2
u + f 2

v )
3

2

r � n = �fuu(0; 0)� fvv(0; 0)

once we evaluate at zero. This completes the proof.

Concluding remarks

In the above proof, we have not used radii of curvature. The radius of curvature at a point,
p, is by de�nition the reciprocal of the curvature at p. Because a circle of radius R has
curvature 1=R, the circle tangent to a curve at p with radius 1=� has the same curvature as
the curve and the same �rst derivative at p. Since the curvature depends only on the �rst
and second derivatives, this particular circle must also have the same second derivative at p.
From this we can see that the radius of curvature generates a circle that best �ts the curve
at p.

x

y

1/κ

The proof mentions that the divergence of the normal and the curvatures do not change
with translations and rotations of the coordinate axes. That the curvature is invariant
modulo the sign is easy to see when one considers the radius of curvature. No matter how
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the curve is oriented with respect to the coordinate axes, the same size circle will best �t
the curve at a particular point. The curvature is equal to the reciprocal of the radius of this
circle and therefore does not vary. The divergence of the normal describes the net rate of
change of the normal which is also invariant with respect to the coordinate axes.

Lastly, note that the above proof can be extended easily to curves and surfaces that are
de�ned implicitly by functions of the form f(x; y; z) = c, or parametrically where x, y, and z
are functions of two other variables. Also, for polar or spherical coordinates, the statement
may be proved in a similar fashion with the correct de�nition of divergence and curvature.
However, the transformation of these coordinates to the Cartesian system automatically
generalizes the above proof.
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