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Introduction 
 
Marangoni phenomena are driven by gradients in surface tension on the interface of a 
fluid.  The gradients in surface tension can arise from an uneven distribution of surfactant 
molecules on the surface of the fluid or from temperature gradients along the interface.  
Gradients in surface tension induce the flow of fluid on the interface from areas of low 
surface tension to areas of high surface tension, or equivalently, fluid will flow from 
areas of high temperature to areas of low temperature on the interface.  Marangoni 
phenomena are believed to be the cause of the formation of finger-like structures during 
some interfacial polymerizations.  The surface tension gradients in the interfacial 
polymerization system arise from the temperature gradient induced by the heat of 
reaction.  Perturbation of the interface can lead to an instability causing the finger-like 
formation that is observed.  This report presents the results of a linear stability analysis of 
the formation of “fingers” on a simplified two-fluid system. 
 
Model 
 
The model system chosen for this investigation consists of two immiscible fluids of 
infinite depth with uniform pressure throughout both fluids.  The fluids are assumed to be 
incompressible fluids with constant physical properties.  A linear temperature gradient is 
assumed across both fluids and it is also assumed that the surface tension between the 
fluids varies linearly with temperature.  The linear stability analysis is performed by 
assuming a disturbance on the interface and determining the growth or decay of the 
disturbance.  A schematic of the disturbed interface and the expected evolution of an 
unstable interface is shown in Figure 1.  The initial perturbation is represented as a 
sinusoidal wave.  The line extending through both fluids represents the temperature 
gradient across the fluids.  As the wave propagates through the fluids, the crest of the 
wave will be at a higher 
temperature than the trough of the 
wave.  The temperature difference 
will result in a surface tension 
gradient causing fluid from the 
crest of the wave to flow to the 
trough of the wave.  The flow of 
fluid into the trough of the wave 
can lead to instabilities of the form 
labeled “fingers” in Figure 1.  
However, if the surface tension 
forces arising from the curvature 
of the interface are dominant, the 
disturbance will decay.  
 
     Figure 1. Schematic Representation of Model System 
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Linear stability analysis 
 
As mentioned earlier, a linear stability analysis consists of assuming a disturbance on the 
interface and determining how the disturbance evolves.  The evolution of the disturbance 
is determined by applying the equations of fluid mechanics and specifying all boundary 
conditions.  Any terms that are nonlinear in the disturbance are ignored.  All the details of 
the linear stability analysis can be found in the Appendix.  In the following analysis the 
coordinate system is defined with the origin at the interface of the two fluids.  The 
positive y direction is the direction pointing into fluid α.        
 
The disturbance on the interface is assumed to be small and take the following form. 
 

)exp(ˆ ikxSt += ηη                                           (1) 
 
where η̂  is the amplitude of the disturbance, S is the frequency, and k is the wave 
number.  Equation (1) represents a sinusoidal disturbance on the interface of the fluid. 
 
The evolution of the interface (kinematic condition) is determined by taking the total time 
derivative of the surface defined by the interface.  This leads to an equation relating the 
time evolution of the interface to the velocity of the fluid evaluated on the interface. 
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Where uy is the y-component of the fluid velocity evaluated on the interface.  So in order 
to determine the evolution of the disturbance it is necessary to determine the velocity of 
the fluid on the interface.  This is accomplished by employing the equations of fluid 
mechanics.  The governing fluid mechanics equations are the continuity equation and the 
equations of motion.  The assumptions stated earlier lead to the following linearized 
forms of the continuity equation and equations of motion for each fluid.   
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where ju  is the velocity vector of fluid j, µj is the viscosity of fluid j, ρj is the density of 

fluid j, and Pj is the pressure in fluid j.  All the variables in equations (3) through (5) 
represent disturbances away from the initially quiescent state.  
 



 
Solutions of the following form are assumed for the velocity and pressure (j=α,β). 
 

)exp()(ˆ ikxStyuu jj +=          (6) 

 

)exp()(ˆ ikxStyPP jj +=          (7) 

 

where )(ˆ yu j and )(ˆ yPj  are the amplitudes of the velocity and pressure disturbance in 

fluid j respectively.  
 
Substituting equations (6) and (7) into the continuity equation and the equations of 
motion lead to the following differential equations.   
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where jxu ,ˆ  is the x-component of the velocity disturbance amplitude in fluid j, and jyu ,ˆ  is 

the y-component of the velocity disturbance amplitude in fluid j. 
 
Equation (8) can be used to eliminate ux in equations (9) and (10).  Then equations (9) 
and (10) can be combined to eliminate the pressure.  The resulting equation is a fourth 
order linear ordinary differential equation with constant coefficients.   
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The solutions to equation (11) for both fluids are of the form 
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Where C1, C2, C3, C4, A1, A2, A3, and A4 are constants to be determined with boundary 
conditions.  Since the velocities are bound at infinity C2, C4, A1, and A3 can be 
eliminated immediately.  The remaining constants are determined from the equality of the 
velocity of both fluids on the interface, the pressure differential across the interface 
resulting from the curvature of the interface, and from the tangential stress balance on the 
interface.  All the boundary conditions can be evaluated at y=0 for a small disturbance. 
   
The equality of the velocities of the two fluids on the interface can be expressed as the 
equality of the components of the velocity on the interface.  This boundary condition 
reduces to the following two equations. 
 

αβ ,, ˆˆ xx uu = ,  y=0          (14) 

 

αβ ,, ˆˆ yy uu = ,  y=0         (15) 

 
 
The assumption of initially uniform pressure in the two fluids results in the pressure 
differential arising from the curvature of the interface only.  This boundary condition is 
expressed by the Young-Laplace equation, which relates the pressure difference across 
the interface to the curvature of the interface.  The Young-Laplace equation leads to the 
following linearized form of the pressure differential across the interface. 
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The tangential stress balance relates the tangential stress on the interface to gradients in 
surface tension.  After linearization, the tangential stress balance reduces to  
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where j

xyτ  is the xy-component of the stress tensor for fluid j. 
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Equations (14) through (17) are used to solve for the remaining unknown constants in 
equations (12) and (13).  After evaluation of the constants, equations (2) and (6) are used 
to find a relationship for S as a function of k.  This is the relationship that is needed to 
determine the wavelength for the fastest growing mode.  The fastest growing mode is the 
growth mode that is observed in an experiment in which an instability occurs. 
 
 
Results 
 
The stability of the disturbance is determined by the value of S in equation (1).  The 
approach taken to determining S was to use to the four boundary conditions to determine 
the constants in equations (12) and (13).  Then the kinematic condition was used to 
determine how S varied as a function of k.  The kinematic condition resulted in a non-
linear equation in S, which had to be solved numerically.   
 
Two arbitrary fluids with the physical properties listed in Table 1 were used in the 
calculation of S.  A reference surface tension of 25 dyne/cm at 25oC was used in the 
calculation.   
 

Table 1 Physical Properties of Fluids Used in Calculations 

Fluid Density(g/cm3) Viscosity (cP) 
α 1 80 
β 1.3 100 

 
 
Figure 2 is a plot of the calculated values of S versus k for a temperature gradient of 
1oC/ft.  Positive values of S will result in an unstable disturbance.  Figure 2 indicates that 
instabilities will occur for long wavelength disturbances while short wavelength 
disturbances will decay.  The point at which S crosses from positive to negative is called 
the cutoff wave number for the 
disturbance.  Stated differently, any 
values of k less than the cutoff 
value will result in an unstable 
disturbance, while values of k 
greater than the cutoff will result in 
a decaying disturbance.  The cutoff 
wave number for the system 
depicted in Figure 2 is 6.6 cm-1.  
This cutoff wave number 
corresponds to a cutoff wavelength 
of 0.95 cm.  The most dangerous 
mode or maximum value of S 
occurs at a wave number of 3.7cm-1. 
    
      Figure 2 Calculated Plot of S versus k  
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The most dangerous mode has an  inverse time constant of 4.47 s-1.  The most dangerous 
mode is the growth mode that is observed in an experiment in which an instability occurs.  
Therefore, the disturbance wavelength that would be observed in an experiment for this   
system would be approximately 1.7 cm.  This is a length scale that could easily be 
achieved in a laboratory setting indicating that this mechanism is a possible explanation 
for the formation of “fingers”.   
 
The effect of the magnitude of the temperature gradient was also investigated.  The curve 
in Figure 2 is for a temperature gradient of 1oC/ft.  Figure 3 is a plot of the S versus k for 
temperature gradients of 1oC/ft and 10oC/ft.  Although it is not apparent in Figure 3, there 
is a slight difference in the two curves.  However, the difference for this temperature 
range is very small.  This can be understood by recalling that the model was developed 
for a small disturbance and that the surface tension varied linearly with temperature.  
Temperature gradients of 1oC/ft and 10oC/ft are significantly small on the scale of the 
disturbance and therefore the change in the behavior of the disturbance shouldn’t be 
expected to change drastically in this temperature range. 

 
     Figure 3 Calculated Plot of S versus k for      
     temperature gradients of 1oC/ft and 10oC/ft  
 

     
Conclusion 
 
The linear stability analysis outlined above indicates that marangoni phenomena could be 
playing a role in the formation of the fingers observed during some interfacial 
polymerizations.  Although the system analyzed in this study is highly simplified, it does 
provide some insight into the physical phenomena responsible for the formation of 
fingers during polymerization. The results of the linear stability analysis indicate that 
long wavelength disturbances are responsible for the formation of the fingers by a 
marangoni mechanism.        
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