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I ntroduction

Marangoni phenomena are driven by gradients in surface tenson on the interface of a
fluid. The gradients in surface tension can arise from an uneven distribution of surfactant
molecules on the surface of the fluid or from temperature gradients along the interface.
Gradients in surface tension induce the flow of fluid on the interface from areas of low
surface tension to areas of high surface tension, or equivaently, fluid will flow from
areas of high temperature to areas of low temperature on the interface. Marangoni
phenomena are believed to be the cause of the formation of finger-like structures during
some interfacia polymerizations. The surface tenson gradients in the interfacia
polymerization system arise from the temperature gradient induced by the heat of
reaction. Perturbation of the interface can lead to an instability causing the finger-like
formation that is observed. This report presents the results of a linear stability analysis of
the formation of “fingers’ on asimplified two-fluid system.

M ode€

The model system chosen for this investigation consists of two immiscible fluids of
infinite depth with uniform pressure throughout both fluids. The fluids are assumed to be
incompressible fluids with constant physical properties. A linear temperature gradient is
assumed across both fluids and it is also assumed that the surface tension between the
fluids varies linearly with temperature. The linear stability analysis is performed by
assuming a disturbance on the interface and determining the growth or decay of the
disturbance. A schematic of the disturbed interface and the expected evolution of an
unstable interface is shown in Figure 1. The initid perturbation is represented as a
snusoida wave. The line extending through both fluids represents the temperature
gradient across the fluids. As the wave propagates through the fluids, the crest of the
wave will be a a higher
temperature than the trough of the
wave. The temperature difference Fluid a
will result in a surface tension
gradient causing fluid from the
crest of the wave to flow to the
trough of the wave. The flow of
fluid into the trough of the wave
can lead to instabilities of the form
labeled “fingers’ in Figure 1.
However, if the surface tension
forces arising from the curvature
of the interface are dominant, the
disturbance will decay. “Fingers”
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Figure 1. Schematic Representation of M odel System



Linear stability analysis

As mentioned earlier, a linear stability analysis consists of assuming a disturbance on the
interface and determining how the disturbance evolves. The evolution of the disturbance
is determined by applying the equations of fluid mechanics and specifying all boundary
conditions. Any terms that are nonlinear in the disturbance are ignored. All the details of
the linear stability analysis can be found in the Appendix. In the following anaysis the
coordinate system is defined with the origin a the interface of the two fluids. The
positive y direction is the direction pointing into fluid a.

The disturbance on the interface is assumed to be small and take the following form.
h =h exp(S +ikx) Q)

where h is the amplitude of the disturbance, S is the frequency, and k is the wave
number. Equation (1) represents asinusoidal disturbance on the interface of the fluid.

The evolution of the interface (kinematic condition) is determined by taking the total time
derivative of the surface defined by the interface. This leads to an equation relating the
time evolution of the interface to the velocity of the fluid evaluated on the interface.
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Where uy is the y-component of the fluid velocity evaluated on the interface. So in order
to determine the evolution of the disturbance it is necessary to determine the velocity of
the fluid on the interface. This is accomplished by employing the equations of fluid
mechanics. The governing fluid mechanics equations are the continuity equation and the
equations of motion. The assumptions stated earlier lead to the following linearized
forms of the continuity equation and equations of motion for each fluid.
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where u; isthe velocity vector of fluid j, m is the viscodity of fluid j, rj is the density of

fluid j, and P; is the pressure in fluid j. All the variables in equations (3) through (5)
represent disturbances away from the initially quiescent state.



Solutions of the following form are assumed for the velocity and pressure (j=a,b).
u; =0, (y) exp(S +ikx) (6)

P, =P, (y)exp(S +ikx) @

where U ((y)and I5j (y) are the amplitudes of the velocity and pressure disturbance in
fluid j respectively.

Substituting equations (6) and (7) into the continuity equation and the equations of
motion lead to the following differential equations.
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where U, ; is the x-component of the velocity disturbance amplitude in fluid j, and a0 ; is
the y-component of the velocity disturbance amplitude in fluid j.

Equation (8) can be used to eliminate uy in equations (9) and (10). Then equations (9)
and (10) can be combined to eliminate the pressure. The resulting equation is a fourth
order linear ordinary differential equation with constant coefficients.
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The solutions to equation (11) for both fluids are of the form
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Where C1, C2, C3, C4, Al, A2, A3, and A4 are constants to be determined with boundary
conditions. Since the velocities are bound at infinity C2, C4, Al, and A3 can be
eliminated immediately. The remaining constants are determined from the equality of the
velocity of both fluids on the interface, the pressure differential across the interface
resulting from the curvature of the interface, and from the tangential stress balance on the
interface. All the boundary conditions can be evaluated at y=0 for a small disturbance.

The equality of the velocities of the two fluids on the interface can be expressed as the
equality of the components of the velocity on the interface. This boundary condition
reduces to the following two equations.

ux,b zax,a’ FO (14)

d,, =0,,, y=0 (15)

The assumption of initially uniform pressure in the two fluids results in the pressure
differential arising from the curvature of the interface only. This boundary condition is
expressed by the Young-Laplace equation, which relates the pressure difference across
the interface to the curvature of the interface. The Y oung-Laplace equation leads to the
following linearized form of the pressure differential across the interface.
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The tangentia stress balance relates the tangential stress on the interface to gradients in
surface tension. After linearization, the tangential stress balance reduces to
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where t X’y is the xy-component of the stress tensor for fluid j.
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Equations (14) through (17) are used to solve for the remaining unknown constants in
equations (12) and (13). After evaluation of the constants, equations (2) and (6) are used
to find a relationship for S as a function of k. This is the relationship that is needed to
determine the wavelength for the fastest growing mode. The fastest growing mode is the
growth mode that is observed in an experiment in which an instability occurs.

Results

The stability of the disturbance is determined by the value of S in equation (1). The
approach taken to determining Swas to use to the four boundary conditions to determine
the constants in equations (12) and (13). Then the kinematic condition was used to
determine how S varied as a function of k. The kinematic condition resulted in a non-
linear equation in S, which had to be solved numerically.

Two arbitrary fluids with the physical properties listed in Table 1 were used in the

calculation of S A reference surface tension of 25 dyne/cm at 25°C was used in the
calculation.

Table 1 Physical Properties of Fluids Used in Calculations

Fluid Density(g/cm®) Viscosity (cP)
a 1 80
b 1.3 100

Figure 2 is a plot of the calculated values of S versus k for a temperature gradient of
1°C/ft. Positive values of Swill result in an unstable disturbance. Figure 2 indicates that
instabilities will occur for long wavelength disturbances while short wavelength
disturbances will decay. The point at which S crosses from positive to negative is called
the cutoff wave number for the

disturbance. Stated differently, any °

values of k less than the cutoff . L
vaue will result in an unstable

disturbance, while values of k :

greater than the cutoff will result in )

a decaying disturbance. The cutoff
wave number for the system
depicted in Figure 2 is 6.6 cm™. o
This  cutoff wave  number \
corresponds to a cutoff wavelength
of 0.95 cm. The most dangerous 2
mode or maximum value of S \
occurs at awave number of 3.7cm™. B E S —
k [=] cm1

Figure 2 Calculated Plot of Sversusk
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The most dangerous mode has an inverse time constant of 4.47 s*. The most dangerous
mode is the growth mode that is observed in an experiment in which an instability occurs.
Therefore, the disturbance wavelength that would be observed in an experiment for this
system would be approximately 1.7 cm. This is a length scale that could easily be
achieved in a laboratory setting indicating that this mechanism is a possible explanation
for the formation of “fingers’.

The effect of the magnitude of the temperature gradient was also investigated. The curve
in Figure 2 is for a temperature gradient of 1°C/ft. Figure 3 isaplot of the S versus k for
temperature gradients of 1°C/ft and 10°C/ft. Although it is not apparent in Figure 3, there
is a dight difference in the two curves. However, the difference for this temperature
range is very small. This can be understood by recalling that the model was devel oped
for a small disturbance and that the surface tension varied linearly with temperature.
Temperature gradients of 1°C/ft and 10°C/ft are significantly small on the scale of the
disturbance and therefore the change in the behavior of the disturbance shouldn’t be
expected to change drastically in this temperature range.
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Figure 3 Calculated Plot of Sversusk for
temper atur e gradients of 1°C/ft and 10°C/ft

Conclusion

The linear stability anaysis outlined above indicates that marangoni phenomena could be
playing a role in the formation of the fingers observed during some interfacial
polymerizations. Although the system anayzed in this study is highly simplified, it does
provide some insight into the physical phenomena responsible for the formation of
fingers during polymerization. The results of the linear stability analysis indicate that
long wavelength disturbances are responsible for the formation of the fingers by a
marangoni mechanism.
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