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Numerical Solution of the Kinetics of Spinodal Decomposition

Motivation

The formation of polymer porous membranes is usually done through either phase
inversion or thermally induced phase separation (TIPS). The phase inversion process
uses a nucleation and growth mechanism, where the polymer and diluent phases will
separate and grow from heterogeneous nucleation sites. Because all nucleation does not
occur at one time step, a wide pore size distribution is usually a result of this mechanism.
The TIPS process uses the mechanism of spinodal decomposition to separate the polymer
and diluent phases. This mechanism is a spontaneous phase separation, leading to a
reticulate structure of polymer-rich matrix surrounding diluent-rich domains. The
distribution of pore sizes is typically much narrower for this method than it is for
nucleation and growth. Diffusion, in this case, proceeds up concentration gradients,
anomalous to typical diffusion. Understanding the kinetics of spinodal decomposition
and developing a preliminary model will help in the preparation of membranes by TIPS.

Parallel to Surface Phenomena

This project does not directly apply the concepts developed in class, but the form
of the equation to be analyzed is the same form as the equation of spinodal de-wetting of
thin films. The de-wetting equation describes the stability of a thin film when both
curvature and VVan der Waals forces are considered. In addition, one of the initial
principles introduced in class was the idea of the “Gibbs dividing surface,” describing a
region between two phases. Most of the techniques developed in class have assumed this
surface to be infinitesimally small. The system investigated here will develop how the
concentration will change between the two separating phases, similar to a Gibbs dividing
surface.

Problem Description and Theory Development

The kinetics of spinodal decomposition can be described by Equation (1),
proposed by J. Cahn:
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In this equation, c is the polymer concentration, M is the diffusion mobility, f is the free
energy of a unit volume of molecules of homogeneous material of composition ¢, and K
is the gradient energy coefficient. In order to solve this problem, we must first non-



dimensionalize the equation. We will define the following initial conditions and non-
dimensional parameters:

Initial Condition: C =C,,
Nondimensional parameters:
C

C=— (dimensionless concentration)
Co
t . . .
T= o (dimensionless time)
C
1 = . . .
[lz = L_§ ] (dimensionless gradient operator)

In these relationships, c, is the initial concentration of the homogeneous sheet, t;
is a characteristic time, and L. is a characteristic length. Both the characteristic time and
length will be parameters specific for the polymer/diluent system being investigated.
Using these transformations, the Cahn-Hilliard equation can be re-written in the form:
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The coefficients a and (3 are dimensionless terms that will be set to unity for this
investigation. G(c) is assumed to have parabolic form, concave up with a dimensionless
parameter & describing the shape of the parabola. A plot of G(c) with varying & can be
found in the Appendix.

Numerical Solution Technique

The partial differential equation to be solved is nonlinear, due to the concentration
dependence of the G coefficient in the first term. This nonlinearity makes it difficult to
solve the differential equation analytically, so numerical analysis will be used. The
technique, developed in the Appendix, is a fully implicit, one-dimensional approach
using finite difference to discretize the position and time steps. The nonlinearity is
removed by time lagging the G(c) coefficient, or evaluating it at the current time step.
The resulting system of linear equations is solved using an LU decomposition algorithm,
and then returned for the next time step. Because both the time and position directions
are dimensionless variables, the step size in both will be set to unity. Additionally, a two-



dimensional plane has been derived, using an equally spaced grid for the dimensionless
x- and y-directions.

Assumptions

For this evaluation, all other contributing forces that would affect the energy of
the system have been neglected. Spinodal decomposition is known to be a very rapid
spontaneous event when the circumstances for instability are present, so this assumption
seems valid. A general form of the second derivative of free energy with concentration
has also been assumed as a parabola, concave up. The free energy relationship with
concentration is specific for each polymer/diluent evaluated, however, and unusual phase
diagrams can lead to non-parabolic free energy relationships. These cases have been
ignored, but can be accounted for with more specific free energy information. Finally,
boundary effects have been ignored. This assumption is implemented through the use of
periodic boundary conditions for the ends of both the one- and two-dimensional domains.

Results and Discussion

The following parameters were investigated in this project:

1) Base Case — Uniform initial concentration, with an impulse increase in one entry
creating the initial concentration gradient.

2) Effect of location of the initial impulse.

3) Effect of magnitude of the initial impulse.

4) Effect of magnitude of the G coefficient.

5) Effect of initial homogeneous concentration.

6) Effect of an initial concentration gradient (no initial impulse was necessary for
this case).

7) Two-dimensional base case with de-stabilizing G value.

The base case will be taken as initial concentration of 0.5, curvature value d of the G
coefficient equal to 6, and impulse concentration equal to 2 at grid position 20. As can be
seen in Figure 1, the base case shows a spontaneous separation into alternating domains
having high and low concentrations, in a sinusoidal response with a determinable
amplitude and wavelength.

As is predicted by spinodal decomposition theory, the system should become
stable in regions where G is positive so the domains will continue to spinodally
decompose until G has increased enough to approach positive numbers. For the base
case, G equals zero at approximately 0.22 and 0.78, and the peaks and valleys of the
concentration profile approaches numbers near to these limits. Natural diffusion
occurring down concentration gradients will also limit the final steady state value. The
base case approaches 0.26 and 0.74 for peaks and valleys, so this result appears
consistent.
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Figure 1: Base case result, with injected impulse at site 20

The effect of position of the initial impulse showed no effect on the kinetics of the
phase separation, as expected due to the periodic boundary conditions leading to only a
phase shift in the concentration profile. The initial magnitude of the impulse also showed
minimal impact on the shape of the decomposed concentration profile. The plots from
the magnitude and location of initial impulse will not be included here, due to brevity
considerations.

The effect of the G coefficient is predictable in that it should change the
concentration limits that the domains will approach, and will even stabilize the system if
the initial concentration is exposed to a positive G coefficient. The result, however,
shows a significant time effect as well. As the negative degree of G is reduced, longer
time is necessary for steady state to be reached (Figure 2), and inversely, a more negative
G leads to a more rapid concentration decomposition (Figure 3). Figure 4 shows the
effect of an impulse change in a positive G environment, and the stabilizing absorption of
the impulse.

When an initial homogeneous concentration in the positive range of G was
selected, stabilization similar to the positive G result shown in Figure 4 was obtained, as
expected. The profile of this result is not included here. When the initial concentration
was set above the critical concentration to maintain negative G but below the base case
value, another interesting result was observed, as can be seen in Figure 5. This problem
then becomes non-symmetrical, allowing less material to diffuse from the valleys to raise
the peaks to their steady state values. After the number of time cycles for the base case,
the peaks off phase from the initial impulse have still not reached steady state. In
addition, the peak and valley values are slightly higher than the base case and the
wavelength of the sinusoidal response is longer.
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Figure 2: Parabolic Factor o decreased to 5.
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Figure 3: Parabolic Factor d increased to 8.
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Figure 4: Parabolic Factor o decreased to 2 (Stabilizing condition).
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Figure 5: Initial homogeneous concentration decreased to 0.3.




The last one-dimensional case, illustrated in Figure 6, investigates the effect of a
linear initial concentration gradient instead of an impulse disturbance. The sinusoidal
response still develops, with a comparable wavelength and amplitude at steady state. The
path to get to steady state, however, is quite different from the base case decomposition.
The sinusoidal response begins along the gradient and slowly expands with time cycles
away from the initial gradient, ultimately becoming independent at steady state.
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Figure 6: Initial concentration gradient replacing initial impulse disturbance.

Finally, a single two-dimensional case has been evaluated, investigating the base
case from the one-dimensional model. The result from this case is very unusual, as it
suggests a different steady state result from the 1-D case. In the initial time cycles,
circular domains develop, suggesting something similar to a two-dimensional sinusoidal
response. As time progresses, however, these domains break up into an infinite
sinusoidal sheet, traveling along the diagonal of the domain. This result suggests further
investigation is necessary to understand the differences between one-dimensional and
two-dimensional behaviors. Three dimensional and contour representations for the two-
dimensional model can be seen in Appendix B.



Conclusion

Through the numerical analysis of the partial differential equation proposed by
Cahn, a rudimentary kinetic model has been developed to describe the mechanism of
spinodal decomposition. This model shows the dependence of spinodal decomposition
on the thermodynamics of the polymer/diluent system and the location, magnitude, and
type of disturbance applied to initiate phase separation. A similar method has proposed a
very basic two-dimensional representation of spinodal decomposition, but the predicted
result is significantly different from the one-dimensional case, opening new areas for
future investigation.

The data from the models is dimensionless and needs physical mobility and
thermodynamic data to determine characteristic lengths and times for the spinodally
decomposing domains. For this reason, only general trending was done in this analysis,
ignoring some of the subtleties like small changes in the wavelengths or amplitudes of the
sinusoidal responses.
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