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Introduction

     Characterization of bubble rise is of importance to the design of mass transfer
operations, such as bubble columns. The overall mass transfer is affected by the bubble
size, pressure inside the gas phase, interaction between bubbles, rise velocity, and
trajectory. Single gas bubbles rising through a liquid have been studied extensively, and it
has been found that when the bubbles are very small, surface tension, which is
predominant over the inertial force and the buoyant force, makes the bubbles spherical
and they tend to preserve the spherical shape as long as their rising velocity, thus
Reynolds number, remains small. In most practical circumstances, all three factors inertia
effect, viscosity, and surface tension should be considered in that the bubbles are not
spherical in shape and they move in a oscillatory manner.
     The objective of this project is to quantify the deformation of rising bubble in infinite
medium with constant velocity. The velocity potential is used to describe the flow past a
3-dimensional bubble, which of the interface is considered as a free surface where ‘slip’
occurs with zero shear stress. It is major advantage of the potential function analysis that
the viscosity effect can be excluded with this ‘slip’ boundary condition even when the
Reynolds number is not sufficiently high.       
     With the pressure difference calculated from the velocity potential, Young-Laplace
equation is used for determining the shape of the free surface.



Model Description

     For the stream function analysis to be valid, the liquid flow past a bubble is assumed
to be irrotational, and the vortex inside the bubble induced by the outer liquid flow is
ignored, i.e. there is no shear stress on the  surface, thus no pressure gradient  developed
in the gas phase.

               

                            Figure 1. Potential flow past a deformed bubble

The description and computation of an irrotational flow is simplified substantially by
introducing the velocity potential Φ  defined in terms of the equation

                     u=Φ∇                                                                                (1)

where u  is the velocity vector. The continuity equation requires that, when the fluid is
incompressible, the velocity potential Φ  be harmonic function

                      02 =Φ∇                                                                             (2)

The boundary conditions to be satisfied in the problem of a flow due to a moving body to
are

                      ∞⋅=Φ∇⋅ unn              at the free surface                           (3)



                      )(constC→Φ          as   ∞→r                                       (4)

 where n  is unit normal vector of the free surface, and ∞u is the terminal velocity vector
of rising bubble.

Instead of solving the partial differential equation (2) of the harmonic function, the
boundary condition (3) is used with the assumption: The tangential derivative of the
velocity potential is negligible compared to the normal derivative of the potential.

The resulting velocity field generated by the moving bubble without slip on the surface
can be converted to the pressure build-up on the free surface. The liquid pressure lP  is

obtained from the Bernoulli equation

                       
22

2

1

2

1 Φ∇+=+= ρρ llo PuPP                                        (5)

where 0P  is static pressure of the liquid on the free surface, and ρ  is the density of

liquid. When bP  denotes the uniform pressure inside the bubble, the pressure difference

across the interface is equal to:

                        ob PPP −=∆
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where subscript s denotes the quantity evaluated at the surface.

The pressure difference across the surface also be expressed by Young-Laplace equation

                         )( nP ⋅∇=∆ γ                                                                     (7)

Equating (6) and (7) yields the governing equation determining the free surface
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With the functional representation of the free surface )(φη=r , the left hand side and the
right hand side of the equation (8) becomes respectively:

(See Appendix A. for detail calculation)
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If the radius of a static bubble is set equal to R,

                          
lsb PP

R
−

= γ2
                                                                      (10)

then the Webber number is defined as:
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The 2nd order ordinary differential equation (9) is reduced to a much simpler form by
incorporating y which is defined as:
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Finally, the differential equation to be solved is rearranged as:
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with boundary conditions

                            0'=y                at  φ=0  and   
2

πφ =                                 (14)

The solution to the non-linear 2nd order differential equation (13) is sought by numerical
method using the Runge-Kutta-Nystrom algorithm for the several Webber numbers.

(See Appendix B. for detail)



Calculation Result

The numerical solutions are represented as a function of angleφ .
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                  Figure 2. Numerical solution of )(φη=r  for several values of We
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                                    Figure 4.  Bubble Deformation on Polar Plot



Conclusion

The calculation shows that the oblation of a bubble increases as the size of bubble, thus
the Webber number increases. However, the shape of a rising bubble with We=4.0 which
has the flat top and bottom surface looks far from that in reality. This is mainly due to the
flaw in model. To make the problem tractable, the model hypothesizes a flow induced by
a moving body with the no slip boundary condition where the tangential derivative of the
velocity potential is ignored, and the induced velocity is calculated to yield the pressure
difference between the case when there is a slip on the surfaces and the case when there
isn’t. This is inconsistent with the irrotational flow analysis and results in the failure of
describing the reality.

For more rigorous calculation, the flow field with a spherical bubble should be applied to
determine the shape of a bubble, and the flow field is recalculated with the deformed
shape. The recalculated flow field is used to give a new shape of a bubble. This iterative
calculation between the flow field and the shape of the bubble is supposed to give the
converged solutions to the velocity potential and the shape of a deformed bubble.
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Appendix A.

The functional expression for the free surface and its unit normal vector are

       )(φη−= rF                                                                           (A.1)
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By the coordination transformation, z-component of unit normal vector zn  is equal to:

       













∂
∂+







∂
∂+

= φ
φ
ηφ

φ
η

sin
1

cos
1

1

1
2

2

r

r

nz                             (A.3)

Using a spherical coordinate system, equation (1), (2) are rewritten as:
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Equation (3), combined with equation (A.2), (A.3), (A.4), yields the expression for 
η∂
Φ∂

at the surface )(φη=r
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Assuming no flow along the surface in the moving body with the no slip boundary.
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By chain rule 
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From equation (A.4) and the chain rule,
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On the other hand, the divergent of normal vector is equal to:
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Plugging equation (A.9), (A.10) into the equation (8) gives the equation (9) which is a
non-linear 2nd ordinary differential equation.



Appendix B.     Runge-Kutta-Nystrom Method

This algorithm computes the solution of the initial value problem
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