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Introduction 
Coating processes find a wide variety of applications, including paints, membranes, photographic 
film, and semiconductor microelectronics.  A thin film or films covering a large surface area of 
substrate necessitates coating of that film by some method.  It is the motivation of this project to 
gain a fundamental understanding of the coating process by modeling the method of dip coating.  
Such significant quantities as the coating thickness variation and velocity profile may be 
predicted in terms of the final coating thickness, substrate velocity, and fluid properties. 
 
Process Model 
For the purposes of tractability of the proposed model, it will simplified as an infinitely long 
substrate (relative to the scale of the thickness) which is removed vertically with a constant 
velocity U from a pool of the fluid to be coated.  The fluid is assumed to perfectly wet the 
substrate with a meniscus radius of curvature R.  The final film thickness is δf.  A diagram of the 
proposed model follows:  
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Figure 1:  Diagram of Coating Process. 
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Assumptions 
The following assumptions were made in the formulation of the model: 
 

1. Surface tension forces dominate over viscous forces 
 
2. Gravitational effects are neglected 

 
3. The fluid completely wets the substrate. 

 
4. The process is simplified as 2-D rectilinear flow. 

 
5. The process occurs at steady state. 

 
6. Inertial effects are neglected. 

 
7. The lubrication theory approximation is used. 

 
 

Model Formulation  
We begin with the Navier-Stokes Equation: 

 
In rectilinear coordinates, this becomes: 

 
Using assumptions 2, 5, 6, and 7, this reduces to: 

 
To determine the dp/dx term, the Young-LaPlace Equation is used: 

where the curvature is as follows: 
 

 
      
Substitution yields the following differential equation: 
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with the No Slip and Free Surface boundary conditions: 

The differential equation can now be integrated with respect to y at constant x to give the 
following result (complete derivation given in Appendix A): 

 
Now δ(x) needs to be determined to complete the derivation.  To do this, the principle of 
conservation of mass is applied over the fluid film.  The flow rate at any point along the film is 
equated to the final film flow rate: 

where W is width of the film in the z-direction.  This yields the following third order differential 
equation for δ(x): 

Analytical solution of this differential equation is facilitated by introduction of the following 
reduced dimensionless variables: 

Now the differential equation becomes, in terms of the reduced variables (see Appendix B for 
details): 

Using the following boundary condition: 

the differential equation reduces to: 

A solution to this differential equation follows:  
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where A is arbitrarily chosen to have a value of unity since it has no effect on the reduced 
thickness.  Also, any exponentially increasing terms have been eliminated such that the solution 
is bounded.  Finally, in terms of the original variables: 

 
Taking the appropriate partial derivatives and substituting into the equation for velocity (see 
Appendix C for details): 

 
And so the desired relationships for coating thickness and velocity profile have been determined. 
 
Discussion 
The final results give a good understanding of the scale of the coating thickness and velocity 
profile.  However, a more useful result would require the determination of the final film 
thickness, δf .  This requires another boundary condition.  A possible methodology would be to 
divide the film into two regions: one for large x and one for small x.  The results for the former 
region were developed above.  The small-x region would require solution of another differential 
equation, which might only be done by numerical methods.  The final boundary condition would 
then be to equate the curvatures of the two regions at the interface.   
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