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Analysis of a Continuous Withdrawal Coating Process

Introduction/Motivation

Coating films onto substrates is a very important process in many industrial applications.

Coating films onto moving substrates finds applications in coating insulating layers onto

wires, coatings on glass fibers, and in the preparation of photographic film or paper.  In

most applications it is desirable to predict the thickness of the film beforehand.  In

addition it is desirable to know how certain phenomena, such as temperature gradients,

will affect the coating process.  In this project, the continuous withdrawal of a substrate

that entrains a liquid film is analyzed.  In addition, surface tension gradients that could

arise due to temperature gradients on the film surface are briefly addressed.  The

thickness of a film adhering onto a moving support is derived as a function of the pure

fluid properties.

Problem Description

A diagram of a continuous withdrawal coating process is given in Figure 1:
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Figure 1:  Continuous Withdrawal Coating Process



In this problem, the velocity profiles of a Newtonian fluid in regions 1 and 2 were solved

assuming there was a temperature gradient in the film (Marangoni stress).  In addition,

the flow rate per width, Q, was derived for these two regions.  Ultimately it is desirable to

obtain the eventual thickness of the film in terms of the pure fluid properties.  In solving

the model for this thickness, the Marangoni condition was dropped in order to simplify

the problem.

Model Formulation

The coating process can be separated into three regions.  Each region contains certain

assumptions that describe the flow.  In general, it assumed that the flow is laminar,

steady-state, and the fluid is Newtonian.  More specifically, in region 1 it is assumed that

the thickness of the film is constant so dh/dx = 0.  Therefore the equations of motion

simplify to the following equation
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The boundary conditions in this region are as follows,
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where Uw is the velocity of the plate.  In region 2, it is assumed that the flow is one-

dimensional, dh/dx << 1, and that there is a negligible effect of flow on interfacial

pressure change.  With these assumptions, the flow model simplifies to
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where the boundary conditions are the same as those in Equations 2 and 3.  Regions 1 and

2 can be matched by setting their flow rates per width equal.  In other words,

∫ ===
h

x constQdyuQ
0 21 . (5)

In region 3, it is assumed that the meniscus is static.  Therefore, the shape of a surface

with a static meniscus is given in Equation 6
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In order to obtain an equation for the thickness, regions 2 and 3 have to be matched.  This

matching will occur in a region where the curvature predicted from region 2 is the same

as the curvature predicted by region 3.  The principal of equal curvatures in the matching

region is necessary for an unbroken surface.  The matching curvatures are expected to

occur in a region where h(x)/ho is approaching one for the static meniscus region, and

where h(x)/ho is approaching infinity for region 2 (where ho is the final film thickness).

Therefore the proper matching condition is
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Solution/Results

Solving Equation 1 for the velocity in Region 1 with a Marangoni stress condition, led to

the following profile
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From this velocity profile, the flow rate was calculated in Equation 9
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The velocity profile and flow rate were also solved for the dynamic meniscus region, i.e.

region 2, as shown in Equations 10 and 11
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At this point, the Marangoni effect was dropped for simplicity in order to determine the

thickness of the film in terms of pure fluid properties.  By setting Q1 = Q2, and setting h

in Q1 to the final thickness value, a differential equation results.  After non-



dimensionalizing the equations and assuming very small values of the capillary number,

Equation 12 results
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where L and λ are defined as follows
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Regions 2 and 3 have to be matched as described previously.  From equation 12, and the

condition specified in Equation 7, it is seen that the curvature for region 2 approaches a

constant as L approaches infinity.  For region 3, Equation 6 can be integrated with the

condition that the thickness approaches infinity at the water line.  This allows the

curvature to be solved as h approaches the final thickness (or as L approaches 1).  After

setting the curvatures equal, Equation 15 results
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where, α is an unknown constant that could be fit to experimental data, or perhaps

determined from a numerical solution of  Equation 12.

Equation 15 shows that the final film thickness depends on the plate withdrawal velocity

as well as the density, viscosity, and surface tension of the coating solution.  In addition,

it can be concluded that the surface tension effects on the final film thickness are small.

Therefore, applying “surface active” agents to the solvent probably would not affect the

final film thickness significantly.  Plots of the final film thickness as a function of plate

withdrawal velocity are shown in Figures 2 and 3 for different solvents (water, heptane,

and liquid carbon dioxide.) and different values of α.



Figure 2  Effect of αααα, plate withdrawal velocity, and solvent on final film thickness.

Figure 3  Effect of “tuning” CO2 on the final film thickness.
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