

Non-Chemically Amplified Resists for Mask Fabrication using 257 nm Optical Pattern Generation: Part II

B. M. Rathsack¹, C. E. Tabery¹, T. B. Stachowiak¹, J. Albelo², C. Xu³, and C. Grant Willson¹

February 28, 2000

¹Department of Chemical Engineering, Univ. Texas at Austin, Austin, TX 78712
 ²ETEC Systems Inc., 21515 NW Evergreen Pkwy., Hillsboro, OR 97124
 ³Shipley Company, 455 Forest Street, Marlborough, MA 01752

257 nm Optical Pattern Generation

- Resolution
 - OPC
 - Pattern fidelity
 - Phase shifting

- Non-chemically amplified resist
 - Post coat delay
 - Post exposure delay
 - No PEB facilities
 - Cluster tool mini environment

Non Chemically Amplified Resist Development at 257 nm

- *Goal*: Determine the optimum 2,1,4 DNQ/ novolak resist formulation for 257 nm
- Method:Model exposure and dissolutionparameters as a function of PACand developer concentration

Verification: Compare simulated and imaged profiles

257 nm Resist Materials

Optimum bleaching of 2,1,4 DNQ occurs at 257 nm Novolak has a transparency maximum at 257 nm

FreD 257 nm Laser

Exposure Parameters at 257 nm

- A = bleachableabsorbance (μ m⁻¹) A =
- B = unbleachable absorbance (μm⁻¹)

$$A = \frac{4\boldsymbol{p}(k_2 - k_1)}{\boldsymbol{l}}$$

 $B = \frac{4\mathbf{p}k_1}{2}$

 C = rate constant of PAC conversion (cm²/mJ)

$$C = \left(\frac{A+B}{A}\right) \left(\frac{1}{T(0)\{1-T(0)\}}\right) \left(\frac{dT(0)}{dE}\right)$$

 k_1 = exposed complex index of refraction k_2 = unexposed complex index of refraction

Dill Exposure Parameters

Higher PAC concentration increases the absorbance as well as increases the level of bleaching at 257 nm
CA resists have less absorbance than NCA resists at 257 nm

PAC Bleaching Kinetics

- 2,1,4 DNQ bleaches with a high photospeed
- Exposure rate constant (C) equals 0.048 cm²/mJ at 257 nm and 0.02 cm²/mJ at 365 nm

Photospeed/ Quantum Efficiency Analysis

Photospeed is 2.7 x greater at 257 nm than 365 nm due to the 2.7 x increase in the molar absorptivity

$$C(\boldsymbol{l}) = \frac{\boldsymbol{f}_T \boldsymbol{a}_m(\boldsymbol{l}) \boldsymbol{l}}{N_A h c}$$

wavelength (nm)	Dill C (1/mm)	Molar Absorptivity (m2/mole)	Quantum Efficiency
257	0.056	5513	0.47
365	0.021	2010	0.34

C = kinetic rate constant (J/m^2)

- ϕ_{T} = quantum efficiency
- $a_m = molar absorptivity (m^2/mole)$

 λ = wavelength of light (m)

 $N_A = Avogadro's$ number (6.02 x 10²³ molecules/mole)

- h = Plank's constant (6.63 x 10^{-34} Js)
- c = speed of light (3 x 10^8 m/s)

Simulated CD Swing Curve

- Plateau in CD swing curve occurs for strongly absorbing resists
- Results from balance in reflectivity and thickness influence
- 30 nm thickness range of flat CD's allows increased CD uniformity

0.15m/0.23N/PEB

Resist Formulation through Simulation

Develop Time Contours

Output: Resist Profile Sidewall angle θ and feature size *w*

Lithographic Imaging Equation

High Resolution Imaging

1. Image Transfer

Maximize the PAC gradient at the feature edge

- 2. Dissolution contrast (γ_R) Maximize dissolution change with dose through
 - R(m) analysis

3. Dissolution Threshold

Position dissolution threshold at the inflection point of the image **1-Dimensional Analysis**

$$\left.\frac{dR}{dx}\right|_{\mathcal{X}^*} = \mathbf{g}_R \frac{dm}{dx}$$

$$\boldsymbol{g}_{R}=\frac{dR}{dm}$$

- R = Dissolution rate
- *x* = Horizontal position
- m = Relative PAC Concentration
- g_R = Resist contrast
- x^* = Nominal edge of resist feature

CD Sensitivity is proportional to the

slope of the horizontal PAC gradient

Image Transfer Analysis Through Formulation Space

w.r.t. dose

Horizontal PAC Gradient at dose to size increases with PAC loading

(und 4.5)(1)(4.0)0.05 • 0.1 m Slope of PAC Gradient Curve • 0.15 m 0.04U.S. Cradient 3.5 3.0 2.5 ▲ 0.2 m 0.03 $\triangle E_{\text{size}}$ 0.02• 0.1 m Horizontal P/ 1.5* 1.0 0.0 0.01 • 0.15 m CD 0.00Sensitivity ▲ 0.2 m $\triangle E_{\text{size}}$ 100 125 75 -0.01 50 75 100 125 150 175 Dose (mJ/cm2) Dose (mJ/cm2)

Contrast Increases with PAC Concentration

Low contrast

High contrast

0.10 m 0.23N TMAH

0.15 m 0.23N TMAH

0.20 m 0.23N TMAH

The University of Texas at Austin

Dissolution Model through Formulation

Surface Inhibition

Lower developer concentration increases surface inhibition

Resin/ 0.26N/ No PEB

Resin/ 0.23N/ No PEB

Post-exposure bake increases surface inhibition

Simulation based Formulation

Sidewall angle increases and the CD sensitivity to dose decreases with PAC concentration

Isolated 0.35 micron spaces/ 0.15 m/ 300 second PAB at 90 C/ 240 s dev. 0.23N TMAH

Simulated Exposure Latitude

•Increase in exposure latitude with PAC concentration

0.10 m PAC

0.20 m PAC

Isolated 0.35 micron spaces/ 300 second PAB at 90 C/ 240 s dev. 0.23N TMAH/ 75+ degree sidewall angle and +/- 10% linewidth range

Preliminary Manufacturing Trials

0.3 micron

0.5 micron

300 s 0.26N TMAH NMD-W Developer, PEB 110°C /420 s

0.15 m

0.10 m

300 s 0.23N TMAH NMD-W Developer, PEB 110°C /420 s

Future

- Complete process trials with 0.1 m and 0.15 m formulations
 - Compare simulations to process trial results
 - Reformulate to maximize process latitude
 - Complete linearity, process latitude and uniformity studies
- Study CA resist in mask making environment
 - Latent image stability
 - Coated resist stability

Acknowledgements

- Shipley (Cheng Bai Xu)
- Clariant (Ralph Dammel)
- FINLE Technologies (Chris Mack, Mark Maslow)
- Peter Tatersall, Chris McAdams, Mike Leason, Wang Yeuh & Thomas Steinhaüsler (UT)
- ETEC Systems Inc. and SRC/ Texas Instruments Fellowship for financial support